【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過點(diǎn),它的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.

1)求橢圓的方程;

2)斜率為的直線過點(diǎn),且與拋物線交于兩點(diǎn),設(shè)點(diǎn),的面積為,求的值;

3)若直線過點(diǎn),且與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線的縱截距為,證明:為定值.

【答案】(1)(2)(3)證明見解析

【解析】

1)把點(diǎn)坐標(biāo)代入橢圓方程得,再結(jié)合焦點(diǎn)坐標(biāo)可求得得橢圓方程;

2)設(shè)直線,設(shè),直線方程代入拋物線方程后可得,由弦長公式求得,求出到直線的距離,可表示出三角形面積,從而求得;

(3)設(shè),得,由兩點(diǎn)坐標(biāo)得出直線方程,求出,同樣由兩點(diǎn)坐標(biāo)求出直線方程,從而求出,計(jì)算,注意兩點(diǎn)在橢圓上,有,,代入后可得常數(shù).

[]1)設(shè)橢圓的方程為,由題設(shè)得,

,橢圓的方程是

2)設(shè)直線,設(shè),由得.

與拋物線有兩個(gè)交點(diǎn),

,,

的距離,又

,故.

3)設(shè),點(diǎn)關(guān)于軸的對稱點(diǎn)為,

則直線,設(shè)

直線,設(shè)

,又,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,并且,,數(shù)列滿足:,記數(shù)列的前項(xiàng)和為

1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式

2)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;

3)記集合,若的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的焦距為,且右焦點(diǎn)F與短軸的兩個(gè)端點(diǎn)組成一個(gè)正三角形.若直線l與橢圓C交于、,且在橢圓C上存在點(diǎn)M,使得:(其中O為坐標(biāo)原點(diǎn)),則稱直線l具有性質(zhì)H.

1)求橢圓C的方程;

2)若直線l垂直于x軸,且具有性質(zhì)H,求直線l的方程;

3)求證:在橢圓C上不存在三個(gè)不同的點(diǎn)P、Q、R,使得直線、都具有性質(zhì)H.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),(為正整數(shù))都在函數(shù)的圖象上.

1)若數(shù)列是等差數(shù)列,證明:數(shù)列是等比數(shù)列;

2)設(shè),過點(diǎn)的直線與兩坐標(biāo)軸所圍成的三角形面積為,試求最小的實(shí)數(shù),使對一切正整數(shù)恒成立;

3)對(2)中的數(shù)列,對每個(gè)正整數(shù),在之間插入個(gè)3,得到一個(gè)新的數(shù)列,設(shè)是數(shù)列的前項(xiàng)和,試探究2016是否是數(shù)列中的某一項(xiàng),寫出你探究得到的結(jié)論并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù).

(1)當(dāng)時(shí),的最小值;

(2)討論函數(shù)的奇偶性,并說明理由;

(3)當(dāng)時(shí),是否存在實(shí)數(shù),使得不等式對任意恒成立?若存在,求出所有滿足條件的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線是雙曲線的一條漸近線,點(diǎn)都在雙曲線上,直線軸相交于點(diǎn),設(shè)坐標(biāo)原點(diǎn)為.

1)求雙曲線的方程,并求出點(diǎn)的坐標(biāo)(用表示);

2)設(shè)點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線軸相交于點(diǎn).問:在軸上是否存在定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

3)若過點(diǎn)的直線與雙曲線交于兩點(diǎn),且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)若,證明:函數(shù)在區(qū)間上是單調(diào)增函數(shù);

2)求函數(shù)在區(qū)間上的最大值;

3)若函數(shù)的圖像過原點(diǎn),且的導(dǎo)數(shù),當(dāng)時(shí),函數(shù)過點(diǎn)的切線至少有2條,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李克強(qiáng)總理在很多重大場合都提出大眾創(chuàng)業(yè),萬眾創(chuàng)新.某創(chuàng)客,白手起家,2015年一月初向銀行貸款十萬元做創(chuàng)業(yè)資金,每月獲得的利潤是該月初投入資金的.每月月底需要交納房租和所得稅共為該月全部金額(包括本金和利潤)的,每月的生活費(fèi)等開支為3000元,余款全部投入創(chuàng)業(yè)再經(jīng)營.如此每月循環(huán)繼續(xù).

1)問到2015年年底(按照12個(gè)月計(jì)算),該創(chuàng)客有余款多少元?(結(jié)果保留至整數(shù)元)

2)如果銀行貸款的年利率為,問該創(chuàng)客一年(12個(gè)月)能否還清銀行貸款?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】按照如下規(guī)則構(gòu)造數(shù)表:第一行是:2;第二行是:;即3,5,第三行是:46,6,8(即從第二行起將上一行的數(shù)的每一項(xiàng)各項(xiàng)加1寫出,再各項(xiàng)加3寫出)

2

3,5

4,6,6,8

5,7,7,9,7,9,9,11

……………………………………

若第行所有的項(xiàng)的和為

1)求;

2)試求的遞推關(guān)系,并據(jù)此求出數(shù)列的通項(xiàng)公式;

3)設(shè),求的值.

查看答案和解析>>

同步練習(xí)冊答案