【題目】、是異面直線,則下列命題中的假命題為( 。

A.過直線可以作一個平面并且只可以作一個平面與直線平行

B.過直線至多可以作一個平面與直線垂直

C.唯一存在一個平面與直線、等距

D.可能存在平面與直線都垂直

【答案】D

【解析】

A中,把直線平移與直線相交,確定一個平面內(nèi)平行于;在B中,反設過直線能作平面、使得、,推出矛盾;在C中,過異面直線、的公垂線段的中點作與該公垂線垂直的平面可滿足條件;在D中,若存在平面與直線、都垂直,則.

A中,由于、是異面直線,把直線平移與直線相交,可確定一個平面,這個平面與直線平行,A選項正確;

B中,若過直線能作平面、使得,則,這與矛盾,

所以,過直線最多只能作一個平面與直線垂直,由,可得

當直線不垂直時,過直線不能作平面與直線垂直,B選項正確;

C中,由于是異面直線,則兩直線的公垂線段只有一條,過該公垂線段的中點作平面與該公垂線垂直,這樣的平面有且只有一個,且這個平面與直線、等距,C選項正確;

在D中,若存在平面與直線、都垂直,由直線與平面垂直的性質定理可得D錯誤.

故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知曲線的方程為,曲線的方程為.以極點為原點,極軸為軸正半軸建立直角坐標系

(1)求曲線的直角坐標方程;

(2)若曲線軸相交于點,與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,、是兩個垃圾中轉站,的正東方向千米處,的南面為居民生活區(qū).為了妥善處理生活垃圾,政府決定在的北面建一個垃圾發(fā)電廠.垃圾發(fā)電廠的選址擬滿足以下兩個要求(、可看成三個點):①垃圾發(fā)電廠到兩個垃圾中轉站的距離與它們每天集中的生活垃圾量成反比,比例系數(shù)相同;②垃圾發(fā)電廠應盡量遠離居民區(qū)(這里參考的指標是點到直線的距離要盡可能大).現(xiàn)估測得兩個中轉站每天集中的生活垃圾量分別約為噸和噸.設

1)求(用的表達式表示);

2)垃圾發(fā)電廠該如何選址才能同時滿足上述要求?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有400名學生參加某項體育測試,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:,整理得到如下頻率分布直方圖:

1)若該樣本中男生有55人,試估計該學校高三年級女生總人數(shù);

2)若規(guī)定小于60分為“不及格”,從該學校高三年級學生中隨機抽取一人,估計該學生不及格的概率;

3)若規(guī)定分數(shù)在為“良好”,為“優(yōu)秀”.用頻率估計概率,從該校高三年級隨機抽取三人,記該項測試分數(shù)為“良好”或“優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.若存在實數(shù),使得關于的方程有三個不同的解,且函數(shù)僅有兩個零點,則實數(shù)的取值范圍是__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù),),且數(shù)列是首項為,公差為的等差數(shù)列.

1)求證:數(shù)列是等比數(shù)列;

2)若,當時,求數(shù)列的前項和的最小值;

3)若,問是否存在實數(shù),使得是遞增數(shù)列?若存在,求出的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是指大氣中直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物.雖然只是地球大氣成分中含量很少的組分,但它對空氣質量和能見度等有重要的影響.我國標準如下表所示.我市環(huán)保局從市區(qū)四個監(jiān)測點2018年全年每天的監(jiān)測數(shù)據(jù)中隨機抽取天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖如圖所示.

(Ⅰ)求這天數(shù)據(jù)的平均值;

(Ⅱ)從這天的數(shù)據(jù)中任取天的數(shù)據(jù),記表示其中空氣質量達到一級的天數(shù),求的分布列和數(shù)學期望;

(Ⅲ)以天的日均值來估計一年的空氣質量情況,則一年(按天計算)中大約有多少天的空氣質量達到一級.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,圓心為坐標原點的單位圓OC的內(nèi)部,且與C有且僅有兩個公共點,直線C只有一個公共點.

1)求C的標準方程;

2)設不垂直于坐標軸的動直線l過橢圓C的左焦點F,直線lC交于A,B兩點,且弦AB的中垂線交x軸于點P,試求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,過的左焦點做軸的垂線交橢圓于、兩點,且.

1)求橢圓的標準方程及長軸長;

2)橢圓的短軸的上下端點分別為,,點,滿足,且,若直線,分別與橢圓交于兩點,且面積是面積的5倍,求的值.

查看答案和解析>>

同步練習冊答案