【題目】已知函數(shù),其中.若存在實數(shù),使得關于的方程有三個不同的解,且函數(shù)僅有兩個零點,則實數(shù)的取值范圍是__________.

【答案】

【解析】

畫出的圖像根據(jù)存在實數(shù),使得關于的方程有三個不同的解,得到的不等式,解得的范圍,根據(jù)僅有兩個零點,得到恒成立,得到,從而又得到一個關于的不等式,解得的范圍,從而得到答案.

時,,在上單調遞減,

,在上單調遞增,

所以方程至多有兩個不同的解,不滿足題意.

所以

作出的圖像如圖,

要使方程有三個不同的解

的圖像有三個不同的交點,

,解得

因為函數(shù)僅有兩個零點

作出的圖像,如圖,

因為,所以在上一定有兩個交點,

所以當時,恒成立,

恒成立,

,

解得,

綜上所述,滿足要求的的取值范圍為.

故答案為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)由方程到確定,對于函數(shù)給出下列命題:

①對任意,都有恒成立:

,使得同時成立;

③對于任意恒成立;

④對任意,,

都有恒成立.其中正確的命題共有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】乙兩人同時參加一次數(shù)學測試,共有20道選擇題,每題均有4個選項,答對得3,答錯或不答得0,甲和乙都解答了所有的試題,經(jīng)比較,他們只有2道題的選項不同,如果甲最終的得分為54,那么乙的所有可能的得分值組成的集合為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達到預期,相關人員提出了兩種調整方案,圖(2)、圖(3)中的實線分別為調整后的函數(shù)圖象.

給出下列四種說法:

①圖(2)對應的方案是:提高票價,并提高成本;

②圖(2)對應的方案是:保持票價不變,并降低成本;

③圖(3)對應的方案是:提高票價,并保持成本不變;

④圖(3)對應的方案是:提高票價,并降低成本.

其中,正確的說法是____________.(填寫所有正確說法的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】、是異面直線,則下列命題中的假命題為( 。

A.過直線可以作一個平面并且只可以作一個平面與直線平行

B.過直線至多可以作一個平面與直線垂直

C.唯一存在一個平面與直線等距

D.可能存在平面與直線、都垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,空間直角坐標系中,四棱錐的底面是邊長為的正方形,且底面在平面內,點軸正半軸上,平面,側棱與底面所成角為45°;

1)若是頂點在原點,且過、兩點的拋物線上的動點,試給出滿足的關系式;

2)若是棱上的一個定點,它到平面的距離為),寫出、兩點之間的距離,并求的最小值;

3)是否存在一個實數(shù)),使得當取得最小值時,異面直線互相垂直?請說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,數(shù)列的前項和為,且.

(1)求證:數(shù)列是等比數(shù)列,并求出通項公式;

(2)對于任意(其中,,均為正整數(shù)),若的所有乘積的和記為,試求的值;

(3)設,,若數(shù)列的前項和為,是否存在這樣的實數(shù),使得對于所有的都有成立,若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知動直線交圓于坐標原點和點,交直線于點

1)若,求點、點的坐標;

2)設動點滿足,其軌跡為曲線,求曲線的方程

3)請指出曲線的對稱性、頂點和圖形范圍,并說明理由;

4)判斷曲線是否存在漸近線,若存在,請直接寫出漸近線方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案