【題目】如圖所示,、是兩個(gè)垃圾中轉(zhuǎn)站,在的正東方向千米處,的南面為居民生活區(qū).為了妥善處理生活垃圾,政府決定在的北面建一個(gè)垃圾發(fā)電廠(chǎng).垃圾發(fā)電廠(chǎng)的選址擬滿(mǎn)足以下兩個(gè)要求(、、可看成三個(gè)點(diǎn)):①垃圾發(fā)電廠(chǎng)到兩個(gè)垃圾中轉(zhuǎn)站的距離與它們每天集中的生活垃圾量成反比,比例系數(shù)相同;②垃圾發(fā)電廠(chǎng)應(yīng)盡量遠(yuǎn)離居民區(qū)(這里參考的指標(biāo)是點(diǎn)到直線(xiàn)的距離要盡可能大).現(xiàn)估測(cè)得、兩個(gè)中轉(zhuǎn)站每天集中的生活垃圾量分別約為噸和噸.設(shè).
(1)求(用的表達(dá)式表示);
(2)垃圾發(fā)電廠(chǎng)該如何選址才能同時(shí)滿(mǎn)足上述要求?
【答案】(1);(2)選址應(yīng)滿(mǎn)足千米,千米.
【解析】
(1)由條件可得,,運(yùn)用余弦定理,即可得到;
(2)由同角的平方關(guān)系可得,求得點(diǎn)到直線(xiàn)的距離,化簡(jiǎn)整理配方,由二次函數(shù)的最值的求法,即可得到所求最大值及、的值.
(1)由條件①,得,,,
則;
(2),
所以點(diǎn)到直線(xiàn)的距離,
,,,
所以當(dāng),即時(shí),取得最大值千米,
即選址應(yīng)滿(mǎn)足千米,千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,已知四邊形是邊長(zhǎng)為的正方形,點(diǎn)在底面上的射影為底面的中心點(diǎn),點(diǎn)在棱上,且的面積為1.
(1)若點(diǎn)是的中點(diǎn),求證:平面平面;
(2)在棱上是否存在一點(diǎn)使得二面角的余弦值為?若存在,求出點(diǎn)的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正四面體中,在平面內(nèi),點(diǎn)在線(xiàn)段上,,是平面的垂線(xiàn),在該四面體繞旋轉(zhuǎn)的過(guò)程中,直線(xiàn)與所成角為,則的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《算法統(tǒng)宗》全稱(chēng)《新編直指算法統(tǒng)宗》,是屮國(guó)古代數(shù)學(xué)名著,程大位著.書(shū)中有如下問(wèn)題:“今有五人均銀四十兩,甲得十兩四錢(qián),戊得五兩六錢(qián).問(wèn):次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分10兩4錢(qián),戊分5兩6錢(qián),且相鄰兩項(xiàng)差相等,則乙丙丁各分幾兩幾錢(qián)?(注:1兩等于10錢(qián))( )
A.乙分8兩,丙分8兩,丁分8兩B.乙分8兩2錢(qián),丙分8兩,丁分7兩8錢(qián)
C.乙分9兩2錢(qián),丙分8兩,丁分6兩8錢(qián)D.乙分9兩,丙分8兩,丁分7兩
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左焦點(diǎn)為F,短軸的兩個(gè)端點(diǎn)分別為A、B,且,為等邊三角形.
(1)求橢圓C的方程;
(2)如圖,點(diǎn)M在橢圓C上且位于第一象限內(nèi),它關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱(chēng)點(diǎn)為N;過(guò)點(diǎn)M作x軸的垂線(xiàn),垂足為H,直線(xiàn)與橢圓C交于另一點(diǎn)J,若,試求以線(xiàn)段為直徑的圓的方程;
(3)已知是過(guò)點(diǎn)A的兩條互相垂直的直線(xiàn),直線(xiàn)與圓相交于兩點(diǎn),直線(xiàn)與橢圓C交于另一點(diǎn)R;求面積取最大值時(shí),直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列滿(mǎn)足,其中A,B是兩個(gè)確定的實(shí)數(shù),
(1)若,求的前n項(xiàng)和;
(2)證明:不是等比數(shù)列;
(3)若,數(shù)列中除去開(kāi)始的兩項(xiàng)外,是否還有相等的兩項(xiàng),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為梯形, 底面, , , , .
(1)求證:平面 平面;
(2)設(shè)為上的一點(diǎn),滿(mǎn)足,若直線(xiàn)與平面所成角的正切值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)無(wú)窮數(shù)列分別滿(mǎn)足,,
其中,設(shè)數(shù)列的前項(xiàng)和分別為,
(1)若數(shù)列都為遞增數(shù)列,求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿(mǎn)足:存在唯一的正整數(shù)(),使得,稱(chēng)數(shù)列為“墜點(diǎn)數(shù)列”
①若數(shù)列為“5墜點(diǎn)數(shù)列”,求;
②若數(shù)列為“墜點(diǎn)數(shù)列”,數(shù)列為“墜點(diǎn)數(shù)列”,是否存在正整數(shù),使得,若存在,求的最大值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐的底面為正方形,且該四棱錐的每條棱長(zhǎng)均為,設(shè)BC,CD的中點(diǎn)分別為E,F,點(diǎn)G在線(xiàn)段PA上,如圖.
(1)證明:;
(2)當(dāng)平面PEF時(shí),求直線(xiàn)GC和平面PEF所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com