已知函數(shù)f(x)=cos2x-sin2x+2
3
sinxcosx.
(1)當x∈[0,
π
2
]時,求f(x)的值域;
(2)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,sin(A+B)=2sin(B+C),
b
a
=
3
,求A以及f(B)的值.
考點:三角函數(shù)中的恒等變換應(yīng)用,正弦定理
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)首先,化簡函數(shù)f(x)=2sin(2x+
π
6
),然后,借助于正弦函數(shù)的單調(diào)性進行求解值域;
(2)根據(jù)三角形的內(nèi)角和性質(zhì),結(jié)合誘導(dǎo)公式,得到sinC=2sinA,然后,利用正弦定理的推論得到三邊之間的關(guān)系,最后借助于余弦定理,求解相應(yīng)的角度.
解答: 解:(1)∵函數(shù)f(x)=cos2x-sin2x+2
3
sinxcosx
=cos2x+
3
sin2x
=2sin(2x+
π
6
),
∵x∈[0,
π
2
],
∴(2x+
π
6
)∈[
π
6
6
],
∴sin(2x+
π
6
)∈[-
1
2
,1],
∴2sin(2x+
π
6
)∈[-1,2],
∴f(x)∈[-1,2],
∴f(x)的值域[-1,2];
(2)sin(A+B)=2sin(B+C),
∴sin(π-C)=2sin(π-A),
∴sinC=2sinA,
∵sinC=
c
2R
,sinA=
a
2R
,(其中R為△ABC外接圓的半徑),
∴c=2a,
b
a
=
3
,
∴b=
3
a

由余弦定理,得
cosA=
b2+c2-a2
2bc
=
3a2+4a2-a2
3
a×2a
=
3
2
,
∵0<A<π,∴A=
π
6
,
∵sinB=
b
a
sinA=
3
×
1
2
=
3
2

∴B=
π
3
(或B=
3
),
∵c>b>a,
∴B=
3
(舍去),
∴B=
π
3
,
∴f(B)=2sin(2×
π
3
+
π
6
)=1.
點評:本題綜合考查了三角公式及其靈活運用、三角恒等變換公式、余弦定理、正弦定理及其應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(
π
4
x-
π
3
)+2cos2
π
8
x.
(Ⅰ)求f(x)的最小正周期及最值;
(Ⅱ)在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,若f(a)=1+
3
2
,a∈(0,5),A=
π
3
,b=1,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>0,b>0)的離心率為
1
2
,且經(jīng)過點P(1,
3
2
).
(Ⅰ)求橢圓E的標準方程;
(Ⅱ)橢圓E的內(nèi)接平行四邊形ABCD的一組對邊分別過橢圓的焦點F1,F(xiàn)2,求該平行四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知角α終邊上一點P(-4a,3a),a≠0,求
cos(
π
2
+α)sin3(-π-α)
cos(
11π
2
-α)sin2(
2
+α)
的值.
(2)已知tanα=3,求
1
2sinαcosα+cos2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N*).
(Ⅰ)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(Ⅱ)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某種同品牌的6瓶飲料中有2瓶已過了保質(zhì)期.
(Ⅰ)從6瓶飲料中任意抽取1瓶,求抽到?jīng)]過保質(zhì)期的飲料的概率;
(Ⅱ)從6瓶飲料中任意抽取2瓶(不分先后順序).
(i)寫出所有可能的抽取結(jié)果;
(ii)求抽到已過保質(zhì)期的飲料的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2|x-m|和函數(shù)g(x)=x|x-m|+2m-8,其中m為參數(shù),且滿足m≤5.
(1)若m=2,寫出函數(shù)g(x)的單調(diào)區(qū)間(無需證明);
(2)若方程f(x)=2|m|在x∈[-2,+∞)上有唯一解,求實數(shù)m的取值范圍;
(3)若對任意x1∈[4,+∞),存在x2∈(-∞,4],使得f(x2)=g(x1)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x+2cos2x+m在區(qū)間[0,
π
2
]上的最大值為3,則
(Ⅰ)m=
 
;
(Ⅱ)當f(x)在[a,b]上至少含有20個零點時,b-a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)十進制數(shù)111化為2進制數(shù)是
 
,
(2)將一個位數(shù)是兩位的最大8進制數(shù)化為十進制數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案