已知函數(shù)f(x)=cos(
π
4
x-
π
3
)+2cos2
π
8
x.
(Ⅰ)求f(x)的最小正周期及最值;
(Ⅱ)在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,若f(a)=1+
3
2
,a∈(0,5),A=
π
3
,b=1,求邊c的值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,余弦定理
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)首先,化簡(jiǎn)函數(shù)解析式:f(x)=
3
sin(
π
4
x+
π
3
)+1,然后,直接確定函數(shù)的周期和最值即可;
(Ⅱ)利用條件f(a)=1+
3
2
,求解a的值,然后,借助于余弦定理求解邊c的值.
解答: 解:(Ⅰ)∵f(x)=cos(
π
4
x-
π
3
)+2cos2
π
8
x
=
3
2
sin
π
4
x+
3
2
x+1
=
3
sin(
π
4
x+
π
3
)+1
∴函數(shù)f(x)的最小正周期T=
π
4
=8,
最大值為
3
+1,最小值為-
3
+1,
(Ⅱ)∵f(a)=
3
sin(
π
4
x+
π
3
)+1=1+
3
2
,
∴sin(
π
4
a+
π
3
)=
1
2

∵a∈(0,5),
π
4
a+
π
3
=
6

得a=2,
由余弦定理得a2=b2+c2-2bccosA=1+c2-c.
c2-c-3=0;
解得c=
1+
13
2
(舍去c=
1-
13
2
).
點(diǎn)評(píng):本題綜合考查了三角恒等變換公式、三角函數(shù)的圖象與性質(zhì)、二倍角公式、余弦定理等知識(shí),屬于中檔題,難度中等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足不等式組
x-2≥0
x+y+1≥0
2x-y+1≥0
,則y-3x的最大值為(  )
A、-6B、-3C、-2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正六棱錐的底邊長(zhǎng)為4厘米,高為2厘米,求它的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市對(duì)個(gè)體戶自主創(chuàng)業(yè)給予小額貸款補(bǔ)貼,每戶貸款額為2萬(wàn)元,貸款期限有6個(gè)月、12個(gè)月、18個(gè)月、24個(gè)月、36個(gè)月五種,這五種貸款期限政府分別需要補(bǔ)助200元、300元、300元、400元、400元,現(xiàn)從2013年享受此項(xiàng)政策的個(gè)體戶中抽取了100戶進(jìn)行調(diào)查統(tǒng)計(jì),其貸款期限的頻數(shù)如下表:
貸款期限 6個(gè)月 12個(gè)月 18個(gè)月 24個(gè)月 36個(gè)月
頻數(shù) 20 a b 10 10
已知貸款期限為18個(gè)月的頻率為0.2.
(1)計(jì)算a,b的值;
(2)以上表各種貸款期限的頻率作為2014年個(gè)體戶選擇各種貸款期限的概率.某小區(qū)2014年共有3戶準(zhǔn)備享受此項(xiàng)政策,計(jì)算其中恰有兩戶選擇貸款期限為12個(gè)月的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(cos θ,sin θ)
n
=(
2
-sin θ,cos θ)
,θ∈(π,2π),且|
m
+
n
|=
8
2
5
,求cos(
θ
2
+
π
8
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,C、D是兩個(gè)小區(qū)所在地,C、D到一條公路AB的垂直距離分別為CA=1km,DB=2km,AB兩端之間的距離為6km.

(1)如圖1,某移動(dòng)公司將在AB之間找一點(diǎn)P,在P處建造一個(gè)信號(hào)塔,使得P對(duì)A、C的張角與P對(duì)B、D的張角相等,試確定點(diǎn)P的位置.
(2)如圖2,環(huán)保部門將在AB之間找一點(diǎn)Q,在Q處建造一個(gè)垃圾處理廠,使得Q對(duì)C、D所張角最大,試確定點(diǎn)Q的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分圖象如圖所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)銳角△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若f(A)=
2
,a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A、B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)頂點(diǎn),|AB|=
5
,直線AB的斜率為-
1
2

(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l平行與AB,并與橢圓相交于C、D兩點(diǎn),求△OCD的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos2x-sin2x+2
3
sinxcosx.
(1)當(dāng)x∈[0,
π
2
]時(shí),求f(x)的值域;
(2)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,sin(A+B)=2sin(B+C),
b
a
=
3
,求A以及f(B)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案