【題目】若函數(shù),關于的方程,給出下列結論
①存在這樣的實數(shù),使得方程有3個不同的實根
②不存在這樣的實數(shù),是的方程有4個不同的實根
③存在這樣的實數(shù),是的方程有5個不同的實根
④不存在這樣的實數(shù),是的方程有6個不同的實根
其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
科目:高中數(shù)學 來源: 題型:
【題目】某班學生中喜愛看綜藝節(jié)目的有18人,體育節(jié)目的有27人,時政節(jié)目的有9人,現(xiàn)采取分層抽樣的方法從這些學生中抽取6名學生.
(Ⅰ)求應從喜愛看綜藝節(jié)目,體育節(jié)目,時政節(jié)目的學生中抽取的學生人數(shù);
(Ⅱ)若從抽取的6名學生中隨機抽取2人分作一組,
(1)列出所有可能的結果;
(2)求抽取的2人中有1人喜愛綜藝節(jié)目1人喜愛體育節(jié)目的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)設橢圓與雙曲線有相同的焦點、,是橢圓與雙曲線的公共點,且△的周長為6,求橢圓的方程;我們把具有公共焦點、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”;
(2)如圖,已知“盾圓”的方程為,設“盾圓”上的任意一點到的距離為,到直線的距離為,求證:為定值;
(3)由拋物線弧()與第(1)小題橢圓弧()所合成的封閉曲線為“盾圓”,設過點的直線與“盾圓”交于、兩點,,,且(),試用表示,并求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是數(shù)列的前項和,對任意,都有;
(1)若,求證:數(shù)列是等差數(shù)列,并求此時數(shù)列的通項公式;
(2)若,求證:數(shù)列是等比數(shù)列,并求此時數(shù)列的通項公式;
(3)設,若,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如下圖是某校高三(1)班的一次數(shù)學知識競賽成績的莖葉圖(圖中僅列出,的數(shù)據(jù))和頻率分布直方圖.
(1)求分數(shù)在的頻率及全班人數(shù);
(2)求頻率分布直方圖中的;
(3)若要從分數(shù)在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數(shù)在之間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“互聯(lián)網(wǎng)+”是“智慧城市”的重要內(nèi)容,A市在智慧城市的建設中,為方便市民使用互聯(lián)網(wǎng),在主城區(qū)覆蓋了免費WiFi為了解免費WiFi在A市的使用情況,調(diào)查機構借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進行抽樣分析,得到如下列聯(lián)表(單位:人):
經(jīng)常使用免費WiFi | 偶爾或不用免費WiFi | 合計 | |
45歲及以下 | 70 | 30 | 100 |
45歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),判斷是否有90%的把握認為A市使用免費WiFi的情況與年齡有關;
(2)將頻率視為概率,現(xiàn)從該市45歲以上的市民中用隨機抽樣的方法每次抽取1人,共抽取3次.記被抽取的3人中“偶爾或不用免費WiFi”的人數(shù)為X,若每次抽取的結果是相互獨立的,求X的分布列,數(shù)學期望E(X)和方差D(X).附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,∥,,平面平面,且.
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的大;
(Ⅲ)已知點在棱上,且異面直線與所成角的余弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問是否存在,使得對恒成立?若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com