【題目】如圖,在棱長為2的正方體中,點P在正方體的對角線AB上,點Q在正方體的棱CD上,若P為動點,Q為動點,則PQ的最小值為_____.

【答案】

【解析】

建立空間直角坐標(biāo)系,利用三點共線設(shè)出點P(λ,λ2λ),0λ2,以及Q(02,μ)0μ2,根據(jù)兩點間的距離公式,以及配方法,即可求解.

建立如圖所示空間直角坐標(biāo)系,設(shè)P(λ,λ,2λ)

Q(0,2,μ)(0λ20μ2)

可得PQ=

2(λ1)20,(2λμ)20,∴2(λ1)2+(2λμ)2+22

當(dāng)且僅當(dāng)λ1=2λμ=0時,等號成立,此時λ=μ=1,

∴當(dāng)且僅當(dāng)PQ分別為ABCD的中點時,

PQ的最小值為.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱的底面是邊長為2的正三角形,側(cè)棱是線段的延長線上一點,平面分別與相交于.

1)求證:平面;

2)求當(dāng)為何值時,平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)中,圓與圓相交與兩點.

(I)求線段的長.

(II)記圓軸正半軸交于點,點在圓C上滑動,求面積最大時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,∠DAB=60°AB=2,AD=4,將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.

1)求證:ABDE;

2)若點FBE的中點,求直線AF與平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是圓上的一個動點,過點作兩條直線,它們與橢圓都只有一個公共點,且分別交圓于點.

(Ⅰ)若,求直線的方程;

(Ⅱ)①求證:對于圓上的任意點,都有成立;

②求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P在曲線x2+y2=1上運動,過點Px軸的垂線,垂足為Q,動點M滿足.

1)求動點M的軌跡方程;

2)點AB在直線xy4=0上,且AB=4,求△MAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新聞出版業(yè)不斷推進供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯誤的是( )

A. 2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加

B. 2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍

C. 2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍

D. 2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心在軸上,且經(jīng)過點.

1)求圓的標(biāo)準(zhǔn)方程;

2)過點的直線與圓相交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)是檢測空氣質(zhì)量的重要參數(shù),其數(shù)值越大說明空氣污染狀況越嚴重,空氣質(zhì)量越差.某地環(huán)保部門統(tǒng)計了該地區(qū)某月1日至24日連續(xù)24天的空氣質(zhì)量指數(shù),根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖,則下列說法錯誤的是( )

A. 該地區(qū)在該月2日空氣質(zhì)量最好

B. 該地區(qū)在該月24日空氣質(zhì)量最差

C. 該地區(qū)從該月7日到12日持續(xù)增大

D. 該地區(qū)的空氣質(zhì)量指數(shù)與這段日期成負相關(guān)

查看答案和解析>>

同步練習(xí)冊答案