【題目】教育部日前出臺《關(guān)于普通高中學(xué)業(yè)水平考試的實施意見》,根據(jù)意見,學(xué)業(yè)水平考試成績以“等級”或“合格、不合格”呈現(xiàn).計入高校招生錄取總成績的學(xué)業(yè)水平考試的3個科目成績以等級呈現(xiàn),其他科目一般以“合格、不合格”呈現(xiàn).若某省規(guī)定學(xué)業(yè)水平考試中歷史科各等級人數(shù)所占比例依次為:A等級,B等級,C等級,D、E等級共.現(xiàn)采用分層抽樣的方法,從某省參加歷史學(xué)業(yè)水平考試的學(xué)生中抽取100人作為樣本,則該樣本中獲得A或B等級的學(xué)生中一共有( )
A.30人B.45人C.60人D.75人
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題尤為突出,某市為了鼓勵居民節(jié)約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標(biāo)準(zhǔn):(單位:噸),用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解全市市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照,……分成9組,制成了如圖所示的頻率分布直方圖.
(1)求頻率分布直方圖中的值,并估計該市市民月用水量的中位數(shù);
(2)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)若存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,橢圓的極坐標(biāo)方程為,其左焦點在直線上.
(1)若直線與橢圓交于兩點,求的值;
(2)求橢圓的內(nèi)接矩形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,,,,,E是AD的中點,O是AC與BE的交點.將沿BE折起到圖2中的位置,得到四棱錐.
(1)證明:平面;
(2)若平面平面,求平面與平面夾角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱柱的底面是邊長為的菱形,且,平面,,于點,點是的中點.
(1)求證:平面;
(2)求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有若干撲克牌:6張牌面分別是2,3,4,5,6,7的撲克牌各一張,先后從中取出兩張.若每次取后放回,連續(xù)取兩次,點數(shù)之和是偶數(shù)的概率為;若每次取后不放回,連續(xù)取兩次,點數(shù)之和是偶數(shù)的概率為,則( )
A.B.C.D.以上三種情況都有可能
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①中,是成立的充要條件;
②當(dāng)時,有;
③已知 是等差數(shù)列的前n項和,若,則;
④若函數(shù)為上的奇函數(shù),則函數(shù)的圖象一定關(guān)于點成中心對稱.其中所有正確命題的序號為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),.
(1)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;
(2)已知,,若對任意都成立,求的最大值;
(3)設(shè),若存在,使得成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com