相關習題
 0  366355  366363  366369  366373  366379  366381  366385  366391  366393  366399  366405  366409  366411  366415  366421  366423  366429  366433  366435  366439  366441  366445  366447  366449  366450  366451  366453  366454  366455  366457  366459  366461 

科目: 來源: 題型:

【題目】如圖1所示,在平面直角坐標系中,拋物線軸交于點和點,與軸交于點

1)求拋物線的表達式;

2)如圖2,將拋物線先向左平移1個單位,再向下平移3個單位,得到拋物線,若拋物線與拋物線相交于點,連接,,

①求點的坐標;

②判斷的形狀,并說明理由;

3)在(2)的條件下,拋物線上是否存在點,使得為等腰直角三角形,若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在矩形中,,動點,分別從點,點同時以每秒1個單位長度的速度出發(fā),且分別在邊上沿,的方向運動,當點運動到點時,兩點同時停止運動,設點運動的時間為,連接,過點,與邊相交于點,連接

1)如圖2,當時,延長交邊于點.求證:;

2)在(1)的條件下,試探究線段三者之間的等量關系,并加以證明;

3)如圖3,當時,延長交邊于點,連接,若平分,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】我市某學校落實立德樹人根本任務,構建五育并舉教育體系,開設了“廚藝、園藝、電工、木工、編織”五大類勞動課程.為了解七年級學生對每類課程的選擇情況,隨機抽取了七年級若干名學生進行調(diào)查(每人只選一類最喜歡的課程),將調(diào)查結果繪制成如下兩幅不完整的統(tǒng)計圖:

1)本次隨機調(diào)查的學生人數(shù)為 人;

2)補全條形統(tǒng)計圖;

3)若該校七年級共有800名學生,請估計該校七年級學生選擇“廚藝”勞動課程的人數(shù);

4)七(1)班計劃在“園藝、電工、木工、編織”四大類勞動課程中任選兩類參加學校期末展示活動,請用列表或畫樹狀圖的方法,求恰好選中“園藝、編織”這兩類勞動課程的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù)且)的圖象相交于,兩點.

1)求反比例函數(shù)的表達式;

2)將一次函數(shù)的圖象沿軸向下平移個單位,使平移后的圖象與反比例函數(shù)的圖象有且只有一個交點,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,為半⊙O的直徑,是半圓上的三等分點,,與半⊙O相切于點,點上一動點(不與點重合),直線于點于點,延長于點,則下列結論正確的是______________.(寫出所有正確結論的序號)

;②的長為;③;④;⑤為定值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如表是一個4×4(44列共16數(shù)組成)的奇妙方陣,從這個方陣中選四個數(shù),而且這四個數(shù)中的任何兩個不在同一行,也不在同一列,有很多選法,把每次選出的四個數(shù)相加,其和是定值,則方陣中第三行三列的數(shù)是(  )

30

2sin60°

22

﹣3

﹣2

sin45°

0

|﹣5|

6

23

1

4

1

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,拋物線x軸相交于AB兩點,與y軸相交于點C,點M為拋物線的頂點.

1)求點C及頂點M的坐標.

2)若點N是第四象限內(nèi)拋物線上的一個動點,連接面積的最大值及此時點N的坐標.

3)若點D是拋物線對稱軸上的動點,點G是拋物線上的動點,是否存在以點BC、D、G為頂點的四邊形是平行四邊形.若存在,求出點G的坐標;若不存在,試說明理由.

4)直線CMx軸于點E,若點P是線段EM上的一個動點,是否存在以點PE、O為頂點的三角形與相似.若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在⊙O中,AB為直徑,點C為圓上一點,延長AB到點D,使CD=CA,且


1)求證:是⊙O的切線.

2)分別過A、B兩點作直線CD的垂線,垂足分別為E、F兩點,過C點作AB的垂線,垂足為點G.求證:

查看答案和解析>>

科目: 來源: 題型:

【題目】某商店計劃采購甲、乙兩種不同型號的平板電腦共20臺,已知甲型平板電腦進價1600元,售價2000元;乙型平板電腦進價為2500元,售價3000元.

1)設該商店購進甲型平板電腦x臺,請寫出全部售出后該商店獲利yx之間函數(shù)表達式.

2)若該商店采購兩種平板電腦的總費用不超過39200元,全部售出所獲利潤不低于8500元,請設計出所有采購方案,并求出使商店獲得最大利潤的采購方案及最大利潤.

查看答案和解析>>

科目: 來源: 題型:

【題目】定義:對角線互相垂直且相等的四邊形叫做垂等四邊形.

1)下面四邊形是垂等四邊形的是____________(填序號)

①平行四邊形;②矩形;③菱形;④正方形

2)圖形判定:如圖1,在四邊形中,,,過點DBD垂線交BC的延長線于點E,且,證明:四邊形是垂等四邊形.

3)由菱形面積公式易知性質(zhì):垂等四邊形的面積等于兩條對角線乘積的一半.應用:在圖2中,面積為24的垂等四邊形內(nèi)接于⊙O中,.求⊙O的半徑.

查看答案和解析>>

同步練習冊答案