科目: 來源: 題型:
【題目】為響應(yīng)垃圾分類處理,改善生態(tài)環(huán)境,某小區(qū)將生活垃圾分成三類:廚余垃圾、可回收垃圾和其他垃圾,分別記為a,b,c,并且設(shè)置了相應(yīng)的垃圾箱,“廚余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分別記為A,B,C
(1)小明將垃圾分裝在三個袋中,任意投放,用畫樹狀圖或列表的方法求把三個袋子都放錯位置的概率是多少?
(2)某學習小組為了了解居民生活垃圾分類投放的情況,現(xiàn)隨機抽取了某天三類垃圾箱中總共100噸的生活垃圾,數(shù)據(jù)統(tǒng)計如表(單位:噸):
A | B | C | |
a | 40 | 10 | 10 |
b | 3 | 24 | 3 |
c | 2 | 2 | 6 |
調(diào)查發(fā)現(xiàn),在“可回收垃圾”中塑料類垃圾占10%,每回收1噸塑料類垃圾可獲得0.7噸二級原料,某城市每天大約產(chǎn)生200噸生活垃圾假設(shè)該城市每天處理投放正確的垃圾,每天大概可回收多少噸塑料類垃圾的二級原料?
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,A、B、C三點分別為A(﹣4,0)、B(﹣4,﹣4)、C(0,4),點P在x軸上,點D在直線AB上,若DA=1,CP⊥DP,垂足為P,則點P的坐標為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=ax2+bx+c過點A(0,3),且拋物線上任意不同兩點M(x1,y1),N(x2,y2)都滿足:當x1<x2<0時,(x1﹣x2)(y1﹣y2)>0;當0<x1<x2時,(x1﹣x2)(y1﹣y2)<0.以原點O為圓心,OA為半徑的圓與拋物線的另兩個交點為B,C,且B在C的左側(cè),△ABC有一個內(nèi)角為60°,則拋物線的解析式為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖坐標系中,O(0,0),A(6,6),B(12,0),將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE=,則AC:AD的值是( 。
A.1:2B.2:3C.6:7D.7:8
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xoy中, 一塊含60°角的三角板作如圖擺放,斜邊 AB在x軸上,直角頂點C在y軸正半軸上,已知點A(-1,0).
(1)請直接寫出點B、C的坐標:B( , )、C( , );并求經(jīng)過A、B、C三點的拋物
線解析式;
(2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段
AB上(點E是不與A、B兩點重合的動點),并使ED所在直線經(jīng)過點C. 此時,EF所在直線與(1)中的拋物線交于第一象限的點M.
①設(shè)AE=x,當x為何值時,△OCE∽△OBC;
②在①的條件下探究:拋物線的對稱軸上是否存在點P使△PEM是等腰三角形,若存在,請求點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:
我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.
理解:
(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);
(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.
求證:BD是四邊形ABCD的“相似對角線”;
(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若△EFG的面積為2,求FH的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場將每件進價為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品的銷售單價每降低1元,其日銷量可增加8件.設(shè)該商品每件降價x元,商場一天可通過A商品獲利潤y元.
(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)
(2)A商品銷售單價為多少時,該商場每天通過A商品所獲的利潤最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.
(1)求∠DAF的度數(shù);
(2)求證:AE2=EFED;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學生會為了解節(jié)能減排、垃圾分類知識
的普及情況,隨機調(diào)查了部分學生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,
并將檢查結(jié)果繪制成下面兩個統(tǒng)計圖.
(1)本次調(diào)查的學生共有__________人,估計該校1200 名學生中“不了解”的人數(shù)是__________人.
(2)“非常了解”的4 人有兩名男生, 兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com