【題目】某商場將每件進(jìn)價(jià)為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品的銷售單價(jià)每降低1元,其日銷量可增加8件.設(shè)該商品每件降價(jià)x元,商場一天可通過A商品獲利潤y元.
(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)
(2)A商品銷售單價(jià)為多少時(shí),該商場每天通過A商品所獲的利潤最大?
【答案】(1);(2)A商品銷售單價(jià)為98元時(shí),該商場每天通過A商品所獲的利潤最大.
【解析】
(1)先表示出降價(jià)x元時(shí)的單價(jià)和銷量,然后根據(jù)總利潤等于每件的利潤乘以銷量即可得到y與x的函數(shù)關(guān)系式;
(2)根據(jù)(1)中的函數(shù)關(guān)系式,然后化為頂點(diǎn)式即可解答本題.
(1)由題意得,商品每件降價(jià)元時(shí)單價(jià)為元,銷售量為件,
則,
即與之間的函數(shù)解析式是;
(2),
當(dāng)時(shí),取得最大值,此時(shí),
銷售單價(jià)為:(元,
答:商品銷售單價(jià)為98元時(shí),該商場每天通過商品所獲的利潤最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(數(shù)學(xué)概念)
若等邊三角形的三個(gè)頂點(diǎn)D、E、F分別在△ABC的三條邊上,我們稱等邊三角形DEF是△ABC的內(nèi)接正三角形.
(概念辨析)
(1)下列圖中△DEF均為等邊三角形,則滿足△DEF是△ABC的內(nèi)接正三角形的是 .
A. B.
C.
(操作驗(yàn)證)
(2)如圖①.在△ABC中,∠B=60°,D為邊AB上一定點(diǎn)(BC>BD),DE=DB,EM平分∠DEC,交邊AC于點(diǎn)M,△DME的外接圓與邊BC的另一個(gè)交點(diǎn)為N.
求證:△DMN是△ABC的內(nèi)接正三角形.
(知識應(yīng)用)
(3)如圖②.在△ABC中,∠B=60°,∠A=45°,BC=2,D是邊AB上的動(dòng)點(diǎn),若邊BC上存在一點(diǎn)E,使得以DE為邊的等邊三角形DEF是△ABC的內(nèi)接正三角形.設(shè)△DEF的外接圓⊙O與邊BC的另一個(gè)交點(diǎn)為K,則DK的最大值為 ,最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點(diǎn)O在AB上,以點(diǎn)O為圓心,OB為半徑的圓經(jīng)過點(diǎn)D,交BC于點(diǎn)E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程kx2+(2k﹣1)x+k﹣1=0(1)只有整數(shù)根,且關(guān)于y的一元二次方程(k﹣1)y2﹣3y+m=0(2)有兩個(gè)實(shí)數(shù)根y1和y2
(1)當(dāng)k為整數(shù)時(shí),確定k的值;
(2)在(1)的條件下,若m>﹣2,用關(guān)于m的代數(shù)式表示y12+y22.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在x軸上,OA=4,將線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°至OB的位置.
(1)求點(diǎn)B的坐標(biāo);
(2)求經(jīng)過點(diǎn)A.O、B的拋物線的解析式;
(3)在此拋物線的對稱軸上,是否存在點(diǎn)P,使得以點(diǎn)P、O、B為頂點(diǎn)的三角形是等腰三角形?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=3cm,以B為圓心,1cm長為半徑畫⊙B,點(diǎn)P在⊙B上移動(dòng),連接AP,并將AP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AP′,連接BP′.在點(diǎn)P移動(dòng)的過程中,BP′長度的最小值為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+3x﹣8的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C.
(1)求直線BC的解析式;
(2)點(diǎn)F是直線BC下方拋物線上的一點(diǎn),當(dāng)△BCF的面積最大時(shí),在拋物線的對稱軸上找一點(diǎn)P,使得△BFP的周長最小,請求出點(diǎn)F的坐標(biāo)和點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,是否存在這樣的點(diǎn)Q(0,m),使得△BFQ為等腰三角形?如果有,請直接寫出點(diǎn)Q的坐標(biāo);如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(2,﹣3),且與x軸交點(diǎn)坐標(biāo)為(﹣1,0),(3,0)
(1)求拋物線的解析式;
(2)在直線AB下方拋物線上找一點(diǎn)D,求出使得△ABD面積最大時(shí)點(diǎn)D的坐標(biāo);
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,是否存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com