【題目】如圖,拋物線y=ax2+bx+6過(guò)點(diǎn)A(6,0),B(4,6),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)如圖1,直線l的解析式為y=x,拋物線的對(duì)稱軸與線段BC交于點(diǎn)P,過(guò)點(diǎn)P作直線l的垂線,垂足為點(diǎn)H,連接OP,求△OPH的面積;
(3)把圖1中的直線y=x向下平移4個(gè)單位長(zhǎng)度得到直線y=x-4,如圖2,直線y=x-4與x軸交于點(diǎn)G.點(diǎn)P是四邊形ABCO邊上的一點(diǎn),過(guò)點(diǎn)P分別作x軸、直線l的垂線,垂足分別為點(diǎn)E,F.是否存在點(diǎn)P,使得以P,E,F為頂點(diǎn)的三角形是等腰三角形?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(2)S△OPH=8;(3)存在滿足條件的點(diǎn)P,點(diǎn)P坐標(biāo)為:(0,4),(,),(4,6),(,6).
【解析】
(1)把,代入解析式,求解即可;
(2)延長(zhǎng)交軸于點(diǎn),則、均為等腰直角三角形,運(yùn)用計(jì)算即可;
(3)由于點(diǎn)可能在、、、、上,而等腰三角形本身又有三種情況,故分別討論與計(jì)算即可.
(1)∵拋物線y=ax2+bx+6過(guò)點(diǎn)A(6,0),B(4,6),
∴
(2)∵該拋物線的對(duì)稱軸為直線 ∴CP=2.
如圖1,延長(zhǎng)HP交y軸于點(diǎn)M,則△OMH、△CMP均為等腰直角三角形.
∴CM=CP=2,
∴OM=OC+CM=6+2=8. OH=MH=
S△OPH=S△OMH﹣S△OMP=
(3)存在滿足條件的點(diǎn)P,點(diǎn)P坐標(biāo)為:
(0,4),(,),(4,6),(,6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各題:
(1)作△ABC的高AD;
(2)作△ABC的角平分線AE;
(3)根據(jù)你所畫的圖形求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,BE⊥EF,DF⊥EF,BE=2.5dm,DF=4dm,那么EF的長(zhǎng)為( )
A. 6.5dm B. 6dm C. 5.5dm D. 4dm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓O的直徑為AB,D是半圓上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),連接BD并延長(zhǎng)至點(diǎn)C,使CD=BD,過(guò)點(diǎn)D作半圓O的切線交AC于點(diǎn)E.
(1)請(qǐng)猜想DE與AC的位置關(guān)系,并說(shuō)明理由;
(2)當(dāng)AB=6,BD=2時(shí),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有正方形ABCD和一個(gè)以O為直角頂點(diǎn)的三角板,移動(dòng)三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.
如圖1,若點(diǎn)O與點(diǎn)A重合,容易得到線段OM與ON的關(guān)系.
(1)觀察猜想:如圖2,若點(diǎn)O在正方形的中心(即兩條對(duì)角線的交點(diǎn)),OM與ON的數(shù)量關(guān)系是___________;
(2)探究證明:如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界),且OM=ON,請(qǐng)判斷三角板移動(dòng)過(guò)程中所有滿足條件的點(diǎn)O可組成什么圖形,并說(shuō)明理由;
(3)拓展延伸:若點(diǎn)O在正方形的外部,且OM=ON,請(qǐng)你在圖4中畫出滿足條件的一種情況,并就“三角板在各種情況下(含外部)移動(dòng),所有滿足條件的點(diǎn)O所組成的圖形”,寫出正確的結(jié)論.(不必說(shuō)明
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-3,0),B(-3,-4),C(-1,-4).
(1)求△ABC的面積;
(2)在圖中作出△ABC關(guān)于x軸對(duì)稱的圖形△DEF,點(diǎn)A、B、C的對(duì)稱點(diǎn)分別為D、E、F,并寫出D、E、F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y1=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(1,4),它與直線y2=x+1的一個(gè)交點(diǎn)的橫坐標(biāo)為2.
(1)求拋物線的解析式;
(2)在給出的坐標(biāo)系中畫出拋物線y1=ax2+bx+c(a≠0)及直線y2=x+1的圖象,并根據(jù)圖象,直接寫出使y1≥y2的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,∠,,的面積為,為邊上一動(dòng)點(diǎn)(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線交于O點(diǎn),過(guò)O點(diǎn)作EF∥BC交AB、AC于E、F.試回答:
(1)圖中等腰三角形是 .猜想:EF與BE、CF之間的關(guān)系是 .理由:
(2)如圖②,若AB≠AC,圖中等腰三角形是 .在第(1)問(wèn)中EF與BE、CF間的關(guān)系還存在嗎?
(3)如圖③,若△ABC中∠B的平分線BO與三角形外角平分線CO交于O,過(guò)O點(diǎn)作OE∥BC交AB于E,交AC于F.這時(shí)圖中還有等腰三角形嗎?EF與BE、CF關(guān)系又如何?說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com