【題目】如圖,點分別在兩邊上,且,以為直徑作半圓,點是半圓的中點
(1)連接,求證: ;
(2)若, ,求陰影部分面積
(3)若點是的外心,判斷四邊形的形狀,并說明理由
科目:初中數(shù)學 來源: 題型:
【題目】在中,已知, ,于點,點在直線上,,點在線段上,是的中點,直線與直線交于點.
(1)如圖,若點在線段上,線段和之間的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)在(1)的條件下,當點在線段上,且時,求證:;
(3)當點在線段的延長線上時,在線段上是否存在點,使得?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知ABCD中,∠ABC=60°,AB=4,BC=m,E為BC邊上的動點,連結(jié)AE,作點B關(guān)于直線AE的對稱點F.
(1)若m=6,①當點F恰好落在∠BCD的平分線上時,求BE的長;
②當E、C重合時,求點F到直線BC的距離;
(2)當點F到直線BC的距離d滿足條件:2﹣2≤d≤2+4,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機側(cè)立面夾角∠PCA=∠BDQ=30°.當雙翼收起時,可以通過閘機的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地要改造部分農(nóng)田種植蔬菜.經(jīng)調(diào)查,平均每畝改造費用是元,添加滴灌設備等費用(元)與改造面積(畝)的平分成正比,比例系數(shù)為,以上兩項費用年內(nèi)不需要增加;每畝種植蔬菜還需種子、人工費用元,這項費用每年均需開支.設改造畝,每畝蔬菜年均銷售金額為元,除上述費用外,沒有其他費用.
(1)設當年收益為元,求與的函數(shù)關(guān)系式(用含的式子表示);
(2)若,如果按年計算,是否改造面積越大收益越大?改造面積為多少時可以得到最大收益?
(3)若時,按年計算,能確保改造的面積越大收益也越大,求的取值范圍.
注:收益=銷售金額-(改造費+滴灌設備等費+種子、人工費)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AB=AC.如圖,D、E為∠BAC的平分線上的兩點,連接BD、CD、BE、CE;如圖4, D、E、F為∠BAC的平分線上的三點,連接BD、CD、BE、CE、BF、CF;如圖5, D、E、F、G為∠BAC的平分線上的四點,連接BD、CD、BE、CE、BF、CF、BG、CG……依此規(guī)律,第17個圖形中有全等三角形的對數(shù)是( 。
A.17B.54C.153D.171
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題呈現(xiàn):我們知道反比例函數(shù)y=(x>0)的圖象是雙曲線,那么函數(shù)y=+n(k、m、n為常數(shù)且k≠0)的圖象還是雙曲線嗎?它與反比例函數(shù)y=(x>0)的圖象有怎樣的關(guān)系呢?讓我們一起開啟探索之旅……
探索思考:我們可以借鑒以前研究函數(shù)的方法,首先探索函數(shù)y=的圖象.
(1)填寫下表,并畫出函數(shù)y=的圖象.
①列表:
x | … | ﹣5 | ﹣3 | ﹣2 | 0 | 1 | 3 | … |
y | … | … |
②描點并連線.
(2)觀察圖象,寫出該函數(shù)圖象的兩條不同類型的特征:
① ② ;
理解運用:函數(shù)y=的圖象是由函數(shù)y=的圖象向 平移 個單位,其對稱中心的坐標為 .
靈活應用:根據(jù)上述畫函數(shù)圖象的經(jīng)驗,想一想函數(shù)y=+2的圖象大致位置,并根據(jù)圖象指出,當x滿足 時,y≥3.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點,順次連接E、F、G、H,若要使四邊形EFGH為菱形,則還需增加的條件是( )
A.AC=BDB.AC⊥BDC.AC⊥BD且AC=BDD.AB=AD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等邊的邊長是,以邊上的高,為邊作等邊三角形,得到第一個等邊;再以等邊的邊上的高,為邊作等邊三角形,得到第二個等邊,再以等邊的邊上的高為邊作等邊三角形,得到第三個等邊: ....記的面積為的面積為的面積為,如此下去,則 ___________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com