【題目】某校八年級甲、乙兩班各有學(xué)生50人,為了了解這兩個(gè)班學(xué)生身體素質(zhì)情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.
(1)收集數(shù)據(jù)
從甲、乙兩個(gè)班各隨機(jī)抽取10名學(xué)生進(jìn)行身體素質(zhì)測試,測試成績(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
在表中:m= ,n= .
(3)分析數(shù)據(jù)
①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:
在表中:x= ,y= .
②若規(guī)定測試成績在80分(含80分)以上的敘述身體素質(zhì)為優(yōu)秀,請估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有 人.
③現(xiàn)從甲班指定的2名學(xué)生(1男1女),乙班指定的3名學(xué)生(2男1女)中分別抽取1名學(xué)生去參加上級部門組織的身體素質(zhì)測試,用樹狀圖和列表法求抽到的2名同學(xué)是1男1女的概率.
【答案】(2)3、2;(3)①75、70;②20;③抽到的2名同學(xué)是1男1女的概率為.
【解析】(2)由收集的數(shù)據(jù)即可得;
(3)①根據(jù)眾數(shù)和中位數(shù)的定義求解可得;
②用總?cè)藬?shù)乘以乙班樣本中優(yōu)秀人數(shù)所占比例可得;
③列表得出所有等可能結(jié)果,利用概率公式求解可得.
(2)由收集的數(shù)據(jù)得知m=3、n=2,
故答案為:3、2;
(3)①甲班成績?yōu)椋?0、60、65、65、75、75、75、80、85、90,
∴甲班成績的中位數(shù)x==75,
乙班成績70分出現(xiàn)次數(shù)最多,所以的眾數(shù)y=70,
故答案為:75、70;
②估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有50×=20人;
③列表如下:
男 | 女 | |
男 | 男、男 | 女、男 |
男 | 男、男 | 女、男 |
女 | 男、女 | 女、女 |
由表可知,共有6種等可能結(jié)果,其中抽到的2名同學(xué)是1男1女的有3種結(jié)果,
所以抽到的2名同學(xué)是1男1女的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形ABCD中,∠A=∠D=∠B=∠C=90,E是AD上的一點(diǎn),F是AB上的一點(diǎn),EF⊥EC,且EF=EC,DE=4cm.
(1)求證:AF=DE.
(2)若AD+DC=18,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校要開展校園文化藝術(shù)節(jié)活動,為了合理編排節(jié)目,對學(xué)生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整統(tǒng)計(jì)圖.
請你根據(jù)圖中信息,回答下列問題:
(1)本次共調(diào)查了 名學(xué)生.
(2)在扇形統(tǒng)計(jì)圖中,“歌曲”所在扇形的圓心角等于 度.
(3)補(bǔ)全條形統(tǒng)計(jì)圖(標(biāo)注頻數(shù)).
(4)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛小品的人數(shù)為 人.
(5)九年一班和九年二班各有2名學(xué)生擅長舞蹈,學(xué)校準(zhǔn)備從這4名學(xué)生中隨機(jī)抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來自同一個(gè)班級的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年三班的小雨同學(xué)想了解本校九年級學(xué)生對哪門課程感興趣,隨機(jī)抽取了部分九年級學(xué)生進(jìn)行調(diào)查(每名學(xué)生必只能選擇一門課程).將獲得的數(shù)據(jù)整理繪制如下兩幅不完整的統(tǒng)計(jì)圖.
據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)在這次調(diào)查中一共抽取了 名學(xué)生,m的值是 .
(2)請根據(jù)據(jù)以上信息直在答題卡上補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中,“數(shù)學(xué)”所對應(yīng)的圓心角度數(shù)是 度;
(4)若該校九年級共有1000名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果,請你估計(jì)該校九年級學(xué)生中有多少名學(xué)生對數(shù)學(xué)感興趣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代第一部自成體系的數(shù)學(xué)專著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動著計(jì)算機(jī)的發(fā)展和應(yīng)用.書中記載:“今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”譯為:“今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1尺=10寸)”,問這塊圓形木材的直徑是多少?”
如圖所示,請根據(jù)所學(xué)知識計(jì)算:圓形木材的直徑AC是( 。
A. 13寸 B. 20寸 C. 26寸 D. 28寸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC中,∠ACB=90°,點(diǎn)D、E分別在BC、AC邊上,連結(jié)BE、AD交于點(diǎn)P,設(shè)AC=kBD,CD=kAE,k為常數(shù),試探究∠APE的度數(shù):
(1)如圖1,若k=1,則∠APE的度數(shù)為 ;
(2)如圖2,若k=,試問(1)中的結(jié)論是否成立?若成立,請說明理由;若不成立,求出∠APE的度數(shù).
(3)如圖3,若k=,且D、E分別在CB、CA的延長線上,(2)中的結(jié)論是否成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題7分)如圖,點(diǎn)B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF,請從下列三個(gè)條件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中選擇一個(gè)合適的條件,使AB∥ED成立,并給出證明.
(1)選擇的條件是 (填序號)
(2)證明:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與x軸、y軸分別交于點(diǎn)B、C,拋物線經(jīng)過點(diǎn)B、C,并與x軸交于另一點(diǎn)A.
(1)求此拋物線及直線AC的函數(shù)表達(dá)式;
(2)垂直于y軸的直線l與拋物線交于點(diǎn)P(,),Q(,),與直線BC交于點(diǎn),N(,),若<<,結(jié)合函數(shù)的圖象,求的取值范圍;
(3)經(jīng)過點(diǎn)D(0,1)的直線m與射線AC、射線OB分別交于點(diǎn)M、N.當(dāng)直線m繞點(diǎn)D旋轉(zhuǎn)時(shí), 是否為定值,若是,求出這個(gè)值,若不是,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線AB∥CD,E為AB、CD間的一點(diǎn),連接EA、EC.
(1)如圖①,若∠A=20°,∠C=40°,則∠AEC= °.
(2)如圖②,若∠A=x°,∠C=y°,則∠AEC= °.
(3)如圖③,若∠A=α,∠C=β,則α,β與∠AEC之間有何等量關(guān)系.并簡要說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com