【題目】九年三班的小雨同學(xué)想了解本校九年級(jí)學(xué)生對(duì)哪門(mén)課程感興趣,隨機(jī)抽取了部分九年級(jí)學(xué)生進(jìn)行調(diào)查(每名學(xué)生必只能選擇一門(mén)課程).將獲得的數(shù)據(jù)整理繪制如下兩幅不完整的統(tǒng)計(jì)圖.

據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

(1)在這次調(diào)查中一共抽取了   名學(xué)生,m的值是   

(2)請(qǐng)根據(jù)據(jù)以上信息直在答題卡上補(bǔ)全條形統(tǒng)計(jì)圖;

(3)扇形統(tǒng)計(jì)圖中,數(shù)學(xué)所對(duì)應(yīng)的圓心角度數(shù)是   度;

(4)若該校九年級(jí)共有1000名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果,請(qǐng)你估計(jì)該校九年級(jí)學(xué)生中有多少名學(xué)生對(duì)數(shù)學(xué)感興趣.

【答案】(1)50,18;(2)補(bǔ)全的條形統(tǒng)計(jì)圖見(jiàn)解析;(3)108;(4)該校九年級(jí)學(xué)生中有300名學(xué)生對(duì)數(shù)學(xué)感興趣.

【解析】1)根據(jù)統(tǒng)計(jì)圖化學(xué)對(duì)應(yīng)的數(shù)據(jù)和百分比可以求得這次調(diào)查的學(xué)生數(shù),進(jìn)而求得m的值;

(2)根據(jù)(1)中的結(jié)果和條形統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得選擇數(shù)學(xué)的人數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得數(shù)學(xué)所對(duì)應(yīng)的圓心角度數(shù);

(4)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù),可以求得該校九年級(jí)學(xué)生中有多少名學(xué)生對(duì)數(shù)學(xué)感興趣.

1)在這次調(diào)查中一共抽取了:10÷20%=50(名)學(xué)生,

m%=9÷50×100%=18%,

故答案為:50,18;

(2)選擇數(shù)學(xué)的有;50﹣9﹣5﹣8﹣10﹣3=15(名),

補(bǔ)全的條形統(tǒng)計(jì)圖如圖所示;

(3)扇形統(tǒng)計(jì)圖中,數(shù)學(xué)所對(duì)應(yīng)的圓心角度數(shù)是:360°×=108°,

故答案為:108;

(4)1000×=300(名),

答:該校九年級(jí)學(xué)生中有300名學(xué)生對(duì)數(shù)學(xué)感興趣.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=ax+b(a≠0)的圖象與反比例函數(shù)y2=(k為常數(shù),k≠0)的圖象交于A、B兩點(diǎn),過(guò)點(diǎn)AACx軸,垂足為C,連接OA,已知OC=2,tanAOC=,B(m,﹣2)

(1)求一次函數(shù)和反比例函數(shù)的解析式.

(2)結(jié)合圖象直接寫(xiě)出:當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,ABAC

1)如圖1,在ADE中,若ADAE,且∠DAE=∠BAC,求證:CDBE;

2)如圖2,在ADE中,若∠DAE=∠BAC60°,且CD垂直平分AE,AD6,CD8,求BD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABE、ADCABC分別是關(guān)于AB,AC邊所在直線的軸對(duì)稱(chēng)圖形,若∠1:∠2:∠3=721,則∠α的度數(shù)為(   ).

A.126°B.110°C.108°D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過(guò)A、B兩點(diǎn),并與過(guò)A點(diǎn)的直線y=﹣x﹣1交于點(diǎn)C.

(1)求拋物線解析式及對(duì)稱(chēng)軸;

(2)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使四邊形ACPO的周長(zhǎng)最小?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)點(diǎn)My軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)M作直線AC的垂線,垂足為N.問(wèn):是否存在這樣的點(diǎn)N,使以點(diǎn)M、N、C為頂點(diǎn)的三角形與AOC相似,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABC是等腰三角形,CA=CB,0°<ACB≤90°.點(diǎn)M在邊AC上,點(diǎn)N在邊BC上(點(diǎn)M、點(diǎn)N不與所在線段端點(diǎn)重合),BN=AM,連接AN,BM,射線AGBC,延長(zhǎng)BM交射線AG于點(diǎn)D,點(diǎn)E在直線AN上,且AE=DE.

(1)如圖,當(dāng)∠ACB=90°時(shí)

①求證:BCM≌△ACN;

②求∠BDE的度數(shù);

(2)當(dāng)∠ACB=α,其它多件不變時(shí),∠BDE的度數(shù)是   (用含α的代數(shù)式表示)

(3)若ABC是等邊三角形,AB=3,點(diǎn)NBC邊上的三等分點(diǎn),直線ED與直線BC交于點(diǎn)F,請(qǐng)直接寫(xiě)出線段CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)甲、乙兩班各有學(xué)生50人,為了了解這兩個(gè)班學(xué)生身體素質(zhì)情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.

(1)收集數(shù)據(jù)

從甲、乙兩個(gè)班各隨機(jī)抽取10名學(xué)生進(jìn)行身體素質(zhì)測(cè)試,測(cè)試成績(jī)(百分制)如下:

甲班65 75 75 80 60 50 75 90 85 65

乙班90 55 80 70 55 70 95 80 65 70

(2)整理描述數(shù)據(jù)

按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

在表中:m= ,n=

(3)分析數(shù)據(jù)

①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:

在表中:x= ,y=

②若規(guī)定測(cè)試成績(jī)?cè)?/span>80分(含80分)以上的敘述身體素質(zhì)為優(yōu)秀,請(qǐng)估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有 人.

③現(xiàn)從甲班指定的2名學(xué)生(11女),乙班指定的3名學(xué)生(21女)中分別抽取1名學(xué)生去參加上級(jí)部門(mén)組織的身體素質(zhì)測(cè)試,用樹(shù)狀圖和列表法求抽到的2名同學(xué)是11女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張老師元旦節(jié)期間到武商眾圓商場(chǎng)購(gòu)買(mǎi)一臺(tái)某品牌筆記本電腦,恰逢商場(chǎng)正推出迎元旦促銷(xiāo)打折活動(dòng),具體優(yōu)惠情況如表:

購(gòu)物總金額(原價(jià))

折扣

不超過(guò)5000元的部分

九折

超過(guò)5000元且不超過(guò)10000元的部分

八折

超過(guò)10000元且不超過(guò)20000元的部分

七折

……

……

例如:若購(gòu)買(mǎi)的商品原價(jià)為15000元,實(shí)際付款金額為:

5000×90%+100005000×80%+1500010000×70%12000元.

1)若這種品牌電腦的原價(jià)為8000/臺(tái),請(qǐng)求出張老師實(shí)際付款金額;

2)已知張老師購(gòu)買(mǎi)一臺(tái)該品牌電腦實(shí)際付費(fèi)5700元.

①求該品牌電腦的原價(jià)是多少元/臺(tái)?

②若售出這臺(tái)電腦商場(chǎng)仍可獲利14%,求這種品牌電腦的進(jìn)價(jià)為多少元/臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過(guò)點(diǎn)C,點(diǎn)A、B在直線l同側(cè),BDlAEl,垂足分別為DE.

求證:△AEC≌△CDB;

2)類(lèi)比探究:如圖2,RtABC中,∠ACB=90°,AC=6,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°AB,連接BC,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案