【題目】直線與x軸、y軸分別交于點(diǎn)B、C,拋物線經(jīng)過點(diǎn)B、C,并與x軸交于另一點(diǎn)A.
(1)求此拋物線及直線AC的函數(shù)表達(dá)式;
(2)垂直于y軸的直線l與拋物線交于點(diǎn)P(,),Q(,),與直線BC交于點(diǎn),N(,),若<<,結(jié)合函數(shù)的圖象,求的取值范圍;
(3)經(jīng)過點(diǎn)D(0,1)的直線m與射線AC、射線OB分別交于點(diǎn)M、N.當(dāng)直線m繞點(diǎn)D旋轉(zhuǎn)時, 是否為定值,若是,求出這個值,若不是,說明理由.
【答案】(1)=; ;(2)1<<2;(3)為定值3.
【解析】(1)先求得直線y=-x+3與x軸、y軸的交點(diǎn)B、C的坐標(biāo),代入入求得a、k的值,即可得拋物線的函數(shù)表達(dá)式;令y=0,求得點(diǎn)A的坐標(biāo),再用待定系數(shù)法求得直線AC的函數(shù)表達(dá)式即可;(2)根據(jù)題意可得y1=y2,即可得x1+x2=2;當(dāng)直線l1經(jīng)過點(diǎn)C時,x1=x3=0,x2=2,此時x1+x3+x2=2,當(dāng)直線l2經(jīng)過頂點(diǎn)(1,4)時,直線BC的解析式為,y=4時,x=﹣1, 此時,x1=x2=1,x3=﹣1,此時x1+x3+x2=1;當(dāng)直線l在直線l1與直線l2之間時,x3<x1<x2,即可得1<<2;(3)為定值3,設(shè)直線MN的解析式為y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=,所以點(diǎn)N的坐標(biāo)為(,0).所以AN=+1=即可得=;將y=3x+3與y=kx+1聯(lián)立解得:x=.求得點(diǎn)M的橫坐標(biāo)為. 過點(diǎn)M作MG⊥x軸,垂足為G.則AG==.再由△MAG∽△CAO,根據(jù)相似三角形的性質(zhì)可得,,==,由此可得=+==3.
(1)∵直線y=-x+3與x軸、y軸分別交于點(diǎn)B、C,
∴B(3,0),C(0,3);
把B(3,0),C(0,3)代入得,
,
解得 ,
∴拋物線函數(shù)表達(dá)式為=;
令y=0,可得=0,解得x1=-1,x2=3;
∴A(-1,0);
設(shè)AC的解析式為y=kx+b,
,
解得,
∴直線AC的函數(shù)表達(dá)式為;
(2)∵y1=y2,∴x1+x2=2.
當(dāng)直線l1經(jīng)過點(diǎn)C時,x1=x3=0,x2=2,此時x1+x3+x2=2,
當(dāng)直線l2經(jīng)過頂點(diǎn)(1,4)時,直線BC的解析式為,y=4時,x=﹣1, 此時,x1=x2=1,x3=﹣1,此時x1+x3+x2=1;當(dāng)直線l在直線l1與直線l2之間時,x3<x1<x2 ,
∴1<<2.
(3)為定值3.
理由如下:設(shè)直線MN的解析式為y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=,
∴點(diǎn)N的坐標(biāo)為(,0).∴AN=+1=,=;
將y=3x+3與y=kx+1聯(lián)立解得:x=.∴點(diǎn)M的橫坐標(biāo)為.
過點(diǎn)M作MG⊥x軸,垂足為G.則AG==.
∵△MAG∽△CAO,∴,
∴,==
∴=+==3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC.
(1)如圖1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求證:CD=BE;
(2)如圖2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=6,CD=8,求BD的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級甲、乙兩班各有學(xué)生50人,為了了解這兩個班學(xué)生身體素質(zhì)情況,進(jìn)行了抽樣調(diào)查,過程如下,請補(bǔ)充完整.
(1)收集數(shù)據(jù)
從甲、乙兩個班各隨機(jī)抽取10名學(xué)生進(jìn)行身體素質(zhì)測試,測試成績(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
在表中:m= ,n= .
(3)分析數(shù)據(jù)
①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:
在表中:x= ,y= .
②若規(guī)定測試成績在80分(含80分)以上的敘述身體素質(zhì)為優(yōu)秀,請估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有 人.
③現(xiàn)從甲班指定的2名學(xué)生(1男1女),乙班指定的3名學(xué)生(2男1女)中分別抽取1名學(xué)生去參加上級部門組織的身體素質(zhì)測試,用樹狀圖和列表法求抽到的2名同學(xué)是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師元旦節(jié)期間到武商眾圓商場購買一臺某品牌筆記本電腦,恰逢商場正推出“迎元旦”促銷打折活動,具體優(yōu)惠情況如表:
購物總金額(原價) | 折扣 |
不超過5000元的部分 | 九折 |
超過5000元且不超過10000元的部分 | 八折 |
超過10000元且不超過20000元的部分 | 七折 |
…… | …… |
例如:若購買的商品原價為15000元,實(shí)際付款金額為:
5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.
(1)若這種品牌電腦的原價為8000元/臺,請求出張老師實(shí)際付款金額;
(2)已知張老師購買一臺該品牌電腦實(shí)際付費(fèi)5700元.
①求該品牌電腦的原價是多少元/臺?
②若售出這臺電腦商場仍可獲利14%,求這種品牌電腦的進(jìn)價為多少元/臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1 =∠2,∠B =∠C,可推得AB∥CD.理由如下:
∵∠1 =∠2(已知),
且∠1 =∠CGD(______________________ ),
∴∠2 =∠CGD(等量代換).
∴CE∥BF(___________________________).
∴∠ =∠C(__________________________).
又∵∠B =∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD(________________________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理a2+b2=c2本身就是一個關(guān)于a,b,c的方程,滿足這個方程的正整數(shù)解(a,b,c)通常叫做勾股數(shù)組.畢達(dá)哥拉斯學(xué)派提出了一個構(gòu)造勾股數(shù)組的公式,根據(jù)該公式可以構(gòu)造出如下勾股數(shù)組:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股數(shù)組可以發(fā)現(xiàn),4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面規(guī)律,第5個勾股數(shù)組為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路上A,B兩點(diǎn)相距25km,C,D為兩莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等.問:
(1)在離A站多少km處?
(2)判定三角形DEC的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A、B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D、E.
求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點(diǎn)A逆時針旋轉(zhuǎn)90°至AB,連接B,C,求△AB,C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中秋節(jié)臨近,某商場決定開展“金秋十月,回饋顧客”的讓利活動,對部分品牌月餅進(jìn)行打折銷售,其中甲品牌月餅打八折,乙品牌月餅打七五折.已知打折前,買盒甲品牌月餅和盒乙品牌月餅需元;打折后,買盒甲品牌月餅和盒乙品牌月餅需元.
(1)打折前甲、乙兩種品牌月餅每盒分別為多少元?
(2)幸福敬老院需購買甲品牌月餅盒,乙品牌月餅盒,問打折后購買這批月餅比不打折節(jié)省了多少錢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com