【題目】如圖,在直角△ABC中,∠BAC=90°,AB=3,M是邊BC上的點(diǎn),連接AM.如果將△ABM沿直線AM翻折后,點(diǎn)B恰好在邊AC的中點(diǎn)處,那么點(diǎn)M到AC的距離是( 。
A. 1.5 B. 2 C. 2.5 D. 3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點(diǎn)C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)求證:MN=AM+BN.
(2)若過點(diǎn)C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,銳角中,,若想找一點(diǎn)P,使得與互補(bǔ),甲、乙、丙三人作法分別如下:
甲:以B為圓心,AB長為半徑畫弧交AC于P點(diǎn),則P即為所求;
乙:分別以B,C為圓心,AB,AC長為半徑畫弧交于P點(diǎn),則P即為所求;
丙:作BC的垂直平分線和的平分線,兩線交于P點(diǎn),則P即為所求.
對于甲、乙、丙三人的作法,下列敘述正確的是
A. 三人皆正確B. 甲、丙正確,乙錯(cuò)誤
C. 甲正確,乙、丙錯(cuò)誤D. 甲錯(cuò)誤,乙、丙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形的邊長為厘米,對角線上的兩個(gè)動(dòng)點(diǎn),.點(diǎn)從點(diǎn),點(diǎn)從點(diǎn)同時(shí)出發(fā),沿對角線以厘米/秒的相同速度運(yùn)動(dòng),過作交的直角邊于,過作交的直角邊于,連接,.設(shè)、、、圍成的圖形面積為,,,圍成的圖形面積為(這里規(guī)定:線段的面積為到達(dá),到達(dá)停止.若的運(yùn)動(dòng)時(shí)間為秒,解答下列問題:
如圖,判斷四邊形是什么四邊形,并證明;
當(dāng)時(shí),求為何值時(shí),;
若是與的和,試用的代數(shù)式表示.(如圖為備用圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探索發(fā)現(xiàn):如圖1,已知Rt△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,過點(diǎn)A作AD⊥l,過點(diǎn)B作BE⊥l,垂足分別為D、E.求證:AD=CE,CD=BE.
(2)遷移應(yīng)用:如圖2,將一塊等腰直角的三角板MON放在平面直角坐標(biāo)系內(nèi),三角板的一個(gè)銳角的頂點(diǎn)與坐標(biāo)原點(diǎn)O重合,另兩個(gè)頂點(diǎn)均落在第一象限內(nèi),已知點(diǎn)M的坐標(biāo)為(1,3),求點(diǎn)N的坐標(biāo).
(3)拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系內(nèi),已知直線y=﹣3x+3與y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,將直線PQ繞P點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)45°后,所得的直線交x軸于點(diǎn)R.求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有2個(gè)信封,每個(gè)信封內(nèi)各裝有四張卡片,其中一個(gè)信封內(nèi)的四張卡片上分別寫有1、2、3、4四個(gè)數(shù),另一個(gè)信封內(nèi)的四張卡片分別寫有5、6、7、8四個(gè)數(shù),甲、乙兩人商定了一個(gè)游戲,規(guī)則是:從這兩個(gè)信封中各隨機(jī)抽取一張卡片,然后把卡片上的兩個(gè)數(shù)相乘,如果得到的積大于20,則甲獲勝,否則乙獲勝.
(1)請你通過列表(或畫樹狀圖)計(jì)算甲獲勝的概率
(2)你認(rèn)為這個(gè)游戲公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB=12,AC⊥AB,BD⊥AB,AC=BD=8。點(diǎn)P在線段AB上以每秒2個(gè)單位的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由B點(diǎn)向點(diǎn)D運(yùn)動(dòng)。它們的運(yùn)動(dòng)時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí),△ACP與△BPQ是否全等,請說明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;
(2)如圖2,將圖1中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變。設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為每秒x個(gè)單位,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x,t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC=8,∠BAC=90,直線l與以AB為直徑的⊙O相切于點(diǎn)B,點(diǎn)D是直線l上任意一動(dòng)點(diǎn),連結(jié)DA交⊙O點(diǎn)E.
(1)當(dāng)點(diǎn)D在AB上方且BD=6時(shí),求AE的長;
(2)當(dāng)CE恰好與⊙O相切時(shí),求BD的長為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.
(1)求證:DF=CF.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com