【題目】如圖:在△ABC中,∠ACB=90°,AC=BC,過點C在△ABC外作直線MN,AM⊥MN于M,BN⊥MN于N.
(1)求證:MN=AM+BN.
(2)若過點C在△ABC內(nèi)作直線MN,AM⊥MN于M,BN⊥MN于N,則AM、BN與MN之間有什么關(guān)系?請說明理由.
【答案】(1)見解析;(2)MN=BN-AM.理由見解析;
【解析】
(1)利用互余關(guān)系證明∠MAC=∠NCB,又∠AMC=∠CNB=90°,AC=BC,故可證△AMC≌△CNB,從而有AM=CN,MC=BN,利用線段的和差關(guān)系證明結(jié)論;
(2)類似于(1)的方法,證明△AMC≌△CNB,從而有AM=CN,MC=BN,可推出AM、BN與MN之間的數(shù)量關(guān)系.
(1)∵AM⊥MN,BN⊥MN,
∴∠AMC=∠CNB=90°,
∵∠ACB=90°,
∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,
∴∠MAC=∠NCB,
在△AMC和△CNB中
,
△AMC≌△CNB(AAS),
AM=CN,MC=NB,
∵MN=NC+CM,
∴MN=AM+BN;
(2)結(jié)論:MN=BN-AM.
∵AM⊥MN,BN⊥MN,
∴∠AMC=∠CNB=90°,
∵∠ACB=90°,
∴∠MAC+∠ACM=90°,∠NCB+∠ACM=90°,
∴∠MAC=∠NCB,
在△AMC和△CNB中,
,
△AMC≌△CNB(AAS),
AM=CN,MC=NB,
∵MN=CM-CN,
∴MN=BN-AM.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AD=3,CD=4,點E在CD上,且DE=1.
(1)感知:如圖①,連接AE,過點E作EF丄AE,交BC于點F,連接AE,易證:△ADE≌△ECF(不需要證明);
(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點E作EF⊥PE,交BC于點F,連接PF.求證:△PDE和△ECF相似;
(3)應(yīng)用:如圖③,若EF交AB于點F,EF丄PE,其他條件不變,且△PEF的面積是6,則AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠ABC、∠ACB 的角平分線交于點 O,MN 過點 O,且MN∥BC,分別交 AB、AC 于點 M、N.若 MN=5cm,CN=2cm,則 BM=________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)
(1)若△CEF與△ABC相似,且當(dāng)AC=BC=2時,求AD的長;
(2)若△CEF與△ABC相似,且當(dāng)AC=3,BC=4時,求AD的長;
(2)當(dāng)點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝所著的《詳解九章算術(shù)》一書中,用如圖的三角形解釋二項式(a+b)n的展開式的各項系數(shù),此三角形稱為“楊輝三角”.
根據(jù)“楊輝三角”請計算(a+b)10的展開式中第三項的系數(shù)為( 。
A. 2018 B. 2017 C. 55 D. 45
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,BD和CD為⊙O的切線,切點分別為B和C.
(1)求證:AC∥OD;
(2)當(dāng)BC=BD,且BD=6cm時,求圖中陰影部分的面積(結(jié)果不取近似值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是AB邊的中點,過點D作邊AB的垂線l,E是l上任意一點,且AC=5,BC=8,則△AEC的周長最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:通過小學(xué)的學(xué)習(xí)我們知道,分數(shù)可分為“真分數(shù)”和“假分數(shù)”,而假分數(shù)都可化為帶分數(shù),如:我們定義:在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”.
如這樣的分式就是假分式;再如:,這樣的分式就是真分式類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式)
如:;
解決下列問題:
(1)分式是______分式(填“真分式”或“假分式”);
(2)將假分式化為帶分式;
(3)如果x為整數(shù),分式的值為整數(shù),求所有符合條件的x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com