【題目】在平面直角坐標(biāo)系中,已知拋物線yx22ax+4a+2a是常數(shù)),

)若該拋物線與x軸的一個交點(diǎn)為(﹣1,0),求a的值及該拋物線與x軸另一交點(diǎn)坐標(biāo);

)不論a取何實(shí)數(shù),該拋物線都經(jīng)過定點(diǎn)H

①求點(diǎn)H的坐標(biāo);

②證明點(diǎn)H是所有拋物線頂點(diǎn)中縱坐標(biāo)最大的點(diǎn).

【答案】a=﹣,拋物線與x軸另一交點(diǎn)坐標(biāo)是(0,0);()①點(diǎn)H的坐標(biāo)為(2,6);②證明見解析.

【解析】

(I)根據(jù)該拋物線與x軸的一個交點(diǎn)為(-1,0),可以求得的值及該拋物線與x軸另一交點(diǎn)坐標(biāo);

(II)①根據(jù)題目中的函數(shù)解析式可以求得點(diǎn)H的坐標(biāo);

②將題目中的函數(shù)解析式化為頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)即可證明點(diǎn)H是所有拋物線頂點(diǎn)中縱坐標(biāo)最大的點(diǎn).

拋物線yx22ax+4a+2x軸的一個交點(diǎn)為(﹣10),

∴0=(﹣122a×(﹣1+4a+2

解得,a=﹣

∴yx2+xxx+1),

當(dāng)y0時,得x10x2=﹣1,

即拋物線與x軸另一交點(diǎn)坐標(biāo)是(0,0);

①∵拋物線yx22ax+4a+2x2+22ax2),

不論a取何實(shí)數(shù),該拋物線都經(jīng)過定點(diǎn)(2,6),

即點(diǎn)H的坐標(biāo)為(2,6);

證明:拋物線yx22ax+4a+2=(xa2﹣(a22+6,

該拋物線的頂點(diǎn)坐標(biāo)為(a,﹣(a22+6),

則當(dāng)a2時,﹣(a22+6取得最大值6,

即點(diǎn)H是所有拋物線頂點(diǎn)中縱坐標(biāo)最大的點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了創(chuàng)建文明城市,增強(qiáng)學(xué)生的環(huán)保意識.隨機(jī)抽取8名學(xué)生,對他們的垃圾分類投放情況進(jìn)行調(diào)查,這8名學(xué)生分別標(biāo)記為,其中“√”表示投放正確,“×”表示投放錯誤,統(tǒng)計(jì)情況如下表.

學(xué)生

垃圾類別

廚余垃圾

可回收垃圾

×

×

×

有害垃圾

×

×

×

×

其他垃圾

×

×

×

1)求8名學(xué)生中至少有三類垃圾投放正確的概率;

2)為進(jìn)一步了解垃圾分類投放情況,現(xiàn)從8名學(xué)生里有害垃圾投放錯誤的學(xué)生中隨機(jī)抽取兩人接受采訪,試用標(biāo)記的字母列舉所有可能抽取的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D為⊙O上一點(diǎn),點(diǎn)C在直徑AB的延長線上,且∠CDB=∠CAD,過點(diǎn)A作⊙O的切線,交CD的延長線于點(diǎn)E

1)判定直線CD與⊙O的位置關(guān)系,并說明你的理由;

2)若CB4,CD8,①求圓的半徑.②求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ 的圖象經(jīng)過A(﹣1,0),B3,0),與y軸相交于點(diǎn)C.點(diǎn)P為第一象限的拋物線上的一個動點(diǎn),過點(diǎn)P分別做BCx軸的垂線,交BC于點(diǎn)EF,交x軸于點(diǎn)MN

1)求這個二次函數(shù)的解析式;

2)求線段PE最大值,并求出線段PE最大時點(diǎn)P的坐標(biāo);

3)若SPMN3SPEF時,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點(diǎn)坐標(biāo)分別為A13),B2,5),C42)(每個方格的邊長均為1個單位長度)

1)將ABC平移,使點(diǎn)A移動到點(diǎn)A1,請畫出A1B1C1;

2)作出ABC關(guān)于O點(diǎn)成中心對稱的A2B2C2,并直接寫出A2,B2,C2的坐標(biāo);

3A1B1C1A2B2C2是否成中心對稱?若是,請寫出對稱中心的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時間x(單位:s)之間具有函數(shù)關(guān)系y=﹣5x2+20x,請根據(jù)要求解答下列問題:

(1)在飛行過程中,當(dāng)小球的飛行高度為15m時,飛行時間是多少?

(2)在飛行過程中,小球從飛出到落地所用時間是多少?

(3)在飛行過程中,小球飛行高度何時最大?最大高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在正方形ABCD中,點(diǎn)EF分別為邊BCCD上的點(diǎn),且∠EAF=45°,AEAF分別交對角線BD于點(diǎn)M、N,則下列結(jié)論正確的是_____.

①∠BAE+DAF=45°;②∠AEB=AEF=ANM;③BM+DN=MN;④BE+DF=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,∠ABC60°,BC4cmDBC的中點(diǎn),若動點(diǎn)E1cm/s的速度從A點(diǎn)出發(fā),沿著ABA的方向運(yùn)動,設(shè)E點(diǎn)的運(yùn)動時間為t秒(0t12),連接DE,當(dāng)△BDE是直角三角形時,t的值為( 。

A.45B.47C.457D.479

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 為倡導(dǎo)低碳生活,常選擇以自行車作為代步工具,如圖1所示是一輛自行車的實(shí)物圖.車架檔ACCD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,點(diǎn)A,C,E在同一條直線上,且∠CAB=75°,如圖2

1)求車架檔AD的長;

2)求車座點(diǎn)E到車架檔AB的距離.

(結(jié)果精確到1 cm.參考數(shù)據(jù): sin75°="0.966," cos75°=0.259,tan75°=3.732)

查看答案和解析>>

同步練習(xí)冊答案