【題目】如圖,點D為⊙O上一點,點C在直徑AB的延長線上,且∠CDB=∠CAD,過點A作⊙O的切線,交CD的延長線于點E.
(1)判定直線CD與⊙O的位置關系,并說明你的理由;
(2)若CB=4,CD=8,①求圓的半徑.②求ED的長.
【答案】(1)直線CD是⊙O的切線,見解析;(2)①見解析,②12
【解析】
(1)連接OD,根據(jù)圓周角定理求出∠DAB+∠DBA=90°,求出∠CDB+∠BDO=90°,根據(jù)切線的判定推出即可;
(2)①證明△CDB∽△CAD,可得,可求出AC,則AB可求出;
②求出OC和OD,證明OCD∽△ECA,得到,求出EC,即可求得ED的長.
(1)證明:連接OD,
∵OD=OB,
∴∠DBA=∠BDO,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠DAB+∠DBA=90°,
∵∠CDB=∠CAD,
∴∠CDB+∠BDO=90°,
即OD⊥CE,
∵D為⊙O的一點,
∴直線CD是⊙O的切線;
(2)①∵OD=OB,
∴∠ODB=∠OBD,
∵∠BDC+∠ODB=90°,∠DAB+∠ABD=90°,
∴∠BDC=∠DAB,
∵∠DCB=∠ACD,
∴△CDB∽△CAD,
∴,
∴AC==16,
∴AB=AC﹣BC=16﹣4=12,
∴圓的半徑為6;
②∵OD=OB=6,
∴OC=OB+BC=10,
∵過點A作的⊙O切線交CD的延長線于點E,
∴EA⊥AC,
∵OD⊥CE,
∴∠ODC=∠EAC=90°,
∵∠OCD=∠ECA,
∴△OCD∽△ECA,
∴,即,
∴EC=20,
∴ED=EC﹣CD=20﹣8=12.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,3),B(﹣3,n)兩點.
(1)求反比例函數(shù)的解析式;
(2)過B點作BC⊥x軸,垂足為C,若P是反比例函數(shù)圖象上的一點,連接PC,PB,求當△PCB的面積等于5時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車專賣店經(jīng)銷某種型號的汽車已知該型號汽車的進價為10萬元/輛,經(jīng)銷一段時間后發(fā)現(xiàn):當該型號汽車售價定為20萬元/輛時,平均每周售出8輛;售價每降低0.5萬元,平均每周多售出1輛
(1)若每輛汽車的售價降低x萬元,則每周的銷售量是 輛(用含x的代數(shù)式表示)
(2)若該店計劃平均每周的銷售利潤是90萬元,為了盡快減少庫存,需將每輛汽車的售價降低多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+4x+5與y軸交于點A,與x軸的正半軸交于點C.
(1)求直線AC解析式;
(2)過點A作AD平行于x軸,交拋物線于點D,點F為拋物線上的一點(點F在AD上方),作EF平行于y軸交AC于點E,當四邊形AFDE的面積最大時?求點F的坐標,并求出最大面積;
(3)若動點P先從(2)中的點F出發(fā)沿適當?shù)穆窂竭\動到拋物線對稱軸上點M處,再沿垂直于y軸的方向運動到y軸上的點N處,然后沿適當?shù)穆窂竭\動到點C停止,當動點P的運動路徑最短時,求點N的坐標,并求最短路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是AB邊上一點,且AE=2,點F是邊BC上的任意一點,把△BEF沿EF翻折,點B的對應點為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形.類似地,我們定義:至少有一組對邊相等的四邊形叫做等對邊四邊形.如圖,在△ABC中,AB>AC,點D,E分別在AB,AC上,設CD,BE相交于點O,如果∠A是銳角,∠DCB=∠EBC=∠A.探究:滿足上述條件的圖形中是否存在等對邊四邊形,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年12月份,我市迎來國家級文明城市復查,為了了解學生對文明城市的了解情況,學校隨機抽取了部分學生進行問卷調查,將調查結果按照“A非常了解了解了解較少不了解”四類分別統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整請根據(jù)圖中信息,解答下列問題:
此次共調查了______名學生;
扇形統(tǒng)計圖中D所在的扇形的圓心角為______;
將條形統(tǒng)計圖補充完整;
若該校共有800名學生,請你估計對文明城市的了解情況為“非常了解”的學生的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線y=x2﹣2ax+4a+2(a是常數(shù)),
(Ⅰ)若該拋物線與x軸的一個交點為(﹣1,0),求a的值及該拋物線與x軸另一交點坐標;
(Ⅱ)不論a取何實數(shù),該拋物線都經(jīng)過定點H.
①求點H的坐標;
②證明點H是所有拋物線頂點中縱坐標最大的點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點B的坐標是(-2,0),點C的坐標是(8,0),以線段BC為直徑作⊙A,交y軸的正半軸于點D,過B、C、D三點作拋物線.
(1)求拋物線的解析式;
(2)連結BD,CD,點E是BD延長線上一點,∠CDE的角平分線DF交⊙A于點F,連結CF,在直線BE上找一點P,使得△PFC的周長最小,并求出此時點P的坐標;
(3)在(2)的條件下,拋物線上是否存在點G,使得∠GFC=∠DCF,若存在,請直接寫出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com