【題目】 為倡導低碳生活,常選擇以自行車作為代步工具,如圖1所示是一輛自行車的實物圖.車架檔ACCD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,點A,CE在同一條直線上,且∠CAB=75°,如圖2

1)求車架檔AD的長;

2)求車座點E到車架檔AB的距離.

(結(jié)果精確到1 cm.參考數(shù)據(jù): sin75°="0.966," cos75°=0.259,tan75°=3.732)

【答案】175cm263cm

【解析】

解:(1)在Rt△ACD中,AC=45CD=60,∴AD=,

車架檔AD的長為75cm

2)過點EEF⊥AB,垂足為點F,

距離EF=AEsin75°=45+20sin75°≈62.7835≈63

車座點E到車架檔AB的距離是63cm

1)在Rt△ACD中利用勾股定理求AD即可.

2)過點EEF⊥AB,在Rt△EFA中,利用三角函數(shù)求EF=AEsin75°,即可得到答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線yx22ax+4a+2a是常數(shù)),

)若該拋物線與x軸的一個交點為(﹣1,0),求a的值及該拋物線與x軸另一交點坐標;

)不論a取何實數(shù),該拋物線都經(jīng)過定點H

①求點H的坐標;

②證明點H是所有拋物線頂點中縱坐標最大的點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點B的坐標是(-20),點C的坐標是(80),以線段BC為直徑作⊙A,交y軸的正半軸于點D,過B、C、D三點作拋物線.

1)求拋物線的解析式;

2)連結(jié)BD,CD,點EBD延長線上一點,∠CDE的角平分線DF交⊙A于點F,連結(jié)CF,在直線BE上找一點P,使得△PFC的周長最小,并求出此時點P的坐標;

3)在(2)的條件下,拋物線上是否存在點G,使得∠GFC=DCF,若存在,請直接寫出點G的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)y的圖象經(jīng)過點A(4,m),ABx軸,且△AOB的面積為2.

(1)求km的值;

(2)若點C(x,y)也在反比例函數(shù)y的圖象上,當-3≤x≤-1時,求函數(shù)值y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,AD=2BC, EAD的中點,連接BD,BE,∠ABD=90°

1)求證:四邊形BCDE為菱形.

2)連接AC,ACBE, BC=2,BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,M、N、C三點的坐標分別為(,1),(3,1),(30),點A為線段MN上的一個動點,連接AC,過點AABACy軸于點B,當點AM運動到N時,點B隨之運動,設(shè)點B的坐標為(0,b),則b的取值范圍是( 。

A.b1B.b1C.bD.b1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在中國數(shù)學名著《九章算術(shù)》中,有這樣一個問題:今有共買牛,七家共出一百九十,不足三百三十;九家共出二百七十,盈三十. 問家數(shù)、牛價各幾何?大意是:幾家人湊錢合伙買牛,如果每7家共出190元,那么還缺少330元錢;如果每9家共出270元,又多了30元錢. 問共有多少人家,每頭牛的價錢是多少元?若設(shè)有x戶人家,則可列方程為(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一帶一路為我們打開了交流、合作的大門,也為沿線各國在商貿(mào)等領(lǐng)域提供了更多的便捷,2018115日至10日,首屆中國國際進口博覽會在國家會展中心(上海)舉辦,據(jù)哈外貿(mào)商會發(fā)布消息,博覽會期間,哈Paseka公司與重慶某國際貿(mào)易公司簽訂了供應(yīng)蜂蜜合同:哈Paseka公司于20196月前分期分批向重慶某國際貿(mào)易公司供給優(yōu)質(zhì)蜂蜜共3000萬件,該公司順應(yīng)新時代購物流,打算分線上和線下兩種方式銷售.

1)若計劃線上銷售量不低于線下銷售量的25%,求該公司計劃在線下銷售量最多為多少萬件?

2)該公司在12月上旬銷售優(yōu)質(zhì)蜂蜜共240萬件,且線上線下銷售單件均為100/件.12月中旬決定線上銷售單價下調(diào)m%,線下銷售單價不變,在這種情況下,12月中旬銷售總量比上旬增加了m%,且中旬線上銷售量占中旬總銷量的,結(jié)果中旬銷售總金額比上旬銷售總金額提高了m%.求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3,AD4,連接AC,OAC的中點,MAD上一點,且MD1,PBC上一動點,則PMPO的最大值為_____

查看答案和解析>>

同步練習冊答案