【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PB、AB,∠PBA=∠C

1)求證:PB是⊙O的切線;

2)連接OP,若OPBC,且OP4,⊙O的半徑為,求BC的長.

【答案】(1)證明見解析;(2)BC=1;

【解析】

1)連接OB,由圓周角定理得出∠ABC90°,得出∠C∠BAC90°,再由OAOB,得出∠BAC∠OBA,證出∠PBA∠OBA90°,即可得出結(jié)論;

2)證明△ABC∽△PBO,得出對應(yīng)邊成比例,即可求出BC的長.

1)連接OB,如圖所示:

ACO的直徑,

∴∠ABC90°,

∴∠CBO+∠OBA90°,

OCOB

∴∠CCBO,

∴∠C+∠OBA90°

∵∠PBAC,

∴∠PBA+∠OBA90°

PBOB

PBO的切線;

2∵⊙O的半徑為,

OB,AC2,

OPBC,

∴∠CCBOBOP

∵∠ABCPBO90°,

∴△ABC∽△PBO,

,

BC1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtOAB,∠OAB90°,∠ABO30°,斜邊OB4,將RtOAB繞點O順時針旋轉(zhuǎn)60°,連接BC

1)如圖1,連接AC,作OPAC,垂足為P,求△AOC的面積和線段OP的長;

2)如圖2,點M是線段OC的中點,點N是線段OB上的動點(不與點O重合),求△CMN周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點P從點A出發(fā),以lcm/s的速度沿A→D→C方向勻速運動,同時點Q從點A出發(fā),以2cm/s的速度沿A→B→C方向勻速運動,當(dāng)一個點到達(dá)點C時,另一個點也隨之停止.設(shè)運動時間為t(s),APQ的面積為S(cm2),下列能大致反映St之間函數(shù)關(guān)系的圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,我們將圓心坐標(biāo)和半徑均為整數(shù)的圓稱為“整圓”.如圖所示,直線lykx+4x軸、y軸分別交于A、B,∠OAB30°,點Px軸上,Pl相切,當(dāng)P在線段OA上運動時,使得P成為“整圓”的點P個數(shù)是_____個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABC中,∠ACB=90°,AC=,BC=16.點O在邊BC上,以O為圓心,OB為半徑的弧經(jīng)過點AP是弧AB上的一個動點.

(1)求半徑OB的長;

(2)如果點P是弧AB的中點,聯(lián)結(jié)PC,求∠PCB的正切值;

(3)如果BA平分∠PBC,延長BP、CA交于點D,求線段DP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個草莓采摘園為吸引顧客,在草莓銷售價格相同的基礎(chǔ)上分別推出優(yōu)惠方案,甲園:顧客進(jìn)園需購買門票,采摘的草莓按六折優(yōu)惠.乙園:顧客進(jìn)園免門票,采摘草莓超過一定數(shù)量后,超過的部分打折銷售.活動期間,某顧客的草莓采摘量為x kg,若在甲園采摘需總費用y1元,若在乙園采摘需總費用y2元, y1,y2x之間的函數(shù)圖象如圖所示,則下列說法中錯誤的是(

A.甲園的門票費用是60

B.草莓優(yōu)惠前的銷售價格是40/kg

C.乙園超過5 kg后,超過的部分價格優(yōu)惠是打五折

D.若顧客采摘12 kg草莓,那么到甲園或乙園的總費用相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y關(guān)于x的二次函數(shù)y=x-bx+b+b-5的圖象與x軸有兩個公共點.

1)求b的取值范圍;

2)若b取滿足條件的最大整數(shù)值,當(dāng)m≤x≤時,函數(shù)y的取值范圍是n≤y≤6-2m,求m,n的值;

3)若在自變量x的值滿足b≤x≤b+3的情況下,對應(yīng)函數(shù)y的最小值為,求此時二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線軸交于、,交軸于點

1)拋物線頂點的坐標(biāo)為________;

2)如圖2,連接、.將沿軸方向以每秒1個單位長度的速度向右平移得到,運動時間為秒.當(dāng)時,求重疊面積的函數(shù)解析式,并求出的最大值;

3)如圖3中,將繞點順時針旋轉(zhuǎn)一定的角度得到,邊與拋物線的對稱軸交于點.在旋轉(zhuǎn)過程中,是否存在一點,使得?若存在,直接寫出所有滿足條件的點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,過點AAHBC,分別交BD,BC于點E,HFED的中點,∠BAF120°,則∠C的度數(shù)為_____

查看答案和解析>>

同步練習(xí)冊答案