【題目】如圖,在⊙O的內(nèi)接ABC中,∠CAB90°,AB2AC,過點ABC的垂線m交⊙O于另一點D,垂足為H,點E上異于A,B的一個動點,射線BE交直線m于點F,連接AE,連接DEBC于點G

1)求證:FED∽△AEB;

2)若,AC2,連接CE,求AE的長;

3)在點E運動過程中,若BGCG,求tanCBF的值.

【答案】1)見解析;(2;(3

【解析】

1)根據(jù)同角的余角重疊得出∠EAB=∠ECB,然后根據(jù)三角形相似的判定定理判定即可得出結(jié)論;

2)根據(jù)相交弦定理得出DHAH,再根據(jù)勾股定理得,BH,進而求出BECE,進而求出EF,FD,借助(1)的結(jié)論即可得出結(jié)論;

3)根據(jù)平行線分線段成比例得出判,根據(jù)平行線的性質(zhì)得出tanCBFtanCGT,根據(jù)圓周角定理得出tanCEDtanABC,進而得出,再結(jié)合已知條件,即可得出結(jié)論.

解:(1)∵⊙O的內(nèi)接△ABC中,∠CAB90°

BC是⊙O的直徑,

∵點E上異于AB的一個動點,

∴∠CEB90°,

∴∠ECB+EBC90°

∵過點ABC的垂線m交⊙O于另一點D,垂足為H

∴∠FHB90°,

∴∠FBH+HFB90°

∴∠HFB=∠ECB,

∵∠EAB=∠ECB

∴∠EAB=∠HFB,

∵∠FBA=∠ADE,

∴△FED∽△AEB;

2)∵∠CAB90°AB2AC,AC2,

AB4,

根據(jù)勾股定理得,BC2,

ADBC,BC是⊙O的切線,

DHAH,

RtAHB中,根據(jù)勾股定理得,BH

,BC是⊙O的直徑,

BECE,∠ECB=∠EBC45°,

BC2,∠BEC90°,

BECE,

∵∠FHB90°,∠EBC45°,BH,

FHBH,BF,

EFBFBE,FDFH+DH,

∵△FED∽△AEB,

,

,

AE;

3)如圖,過點GGTCET,

∵∠CEB90°,

TGEB

,∠CGT=∠CBF,

tanCBFtanCGT,

,

∴∠CED=∠ABC,

tanCEDtanABC

,

BGCG,

ETCT,,

,

tanCBFtanCGT

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市水果批發(fā)欲將A市的一批水果運往本市銷售,有火車和汽車兩種運輸方式,運輸過程中的損耗均為200/時,其它主要參考數(shù)據(jù)如下:

運輸工具

途中平均速度(千米/時)

運費(元/千米)

裝卸費用(元)

火車

100

15

2000

汽車

80

20

900

(1) 如果汽車的總支出費用比火車費用多1100元,你知道本市與A市之間的路程是多少千米嗎?請你列方程解答.(總支出包含損耗、運費和裝卸費用)

(2) 如果A市與B市之間的距離為S千米,你若是A市水果批發(fā)部門的經(jīng)理,要想將這種水果運往B市銷售,試分析以上兩種運輸工具中選擇哪種運輸方式比較合算呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C是⊙O的直徑AB延長線上一點,過⊙O上一點DDFABF,交⊙O于點E,點MBE的中點,AB4,∠E=∠C30°

1)求證:CD是⊙O的切線;

2)求DM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.

求出每天的銷售利潤與銷售單價之間的函數(shù)關(guān)系式;

求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?

如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的頂點D關(guān)于射線CP的對稱點G落在正方形內(nèi),連接BG并延長交邊AD于點E,交射線CP于點F.連接DFAF,CG

1)試判斷DFBF的位置關(guān)系,并說明理由;

2)若CF4,DF2,求AE的長;

3)若∠ADF2FAD,求tanFAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,,點是線段上的一個動點,以點為圓心,為半徑作,連接.

(1)當經(jīng)過的中點時,的長為_ ;

(2)當平分時,判斷的位置關(guān)系.說明理由,并求出的長;

3)如圖2,當交于兩點,且時,求點的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店準備進一批季節(jié)性小家電,每個進價為40元,經(jīng)市場預(yù)測,銷售定價為50元,可售出400個;定價每增加1元,銷售量將減少10個.設(shè)每個定價增加x元.

(1)寫出售出一個可獲得的利潤是多少元(用含x的代數(shù)式表示)?

(2)商店若準備獲得利潤6000元,并且使進貨量較少,則每個定價為多少元?應(yīng)進貨多少個?

(3)商店若要獲得最大利潤,則每個應(yīng)定價多少元?獲得的最大利潤是多少?

【答案】(1)x+10元;(2)每個定價為70元,應(yīng)進貨200個.(3)每個定價為65元時得最大利潤,可獲得的最大利潤是6250元.

【解析】試題分析:(1)根據(jù)利潤=銷售價-進價列關(guān)系式,(2)總利潤=每個的利潤×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.

試題解析:由題意得:(1)50+x-40=x+10(元),

(2)設(shè)每個定價增加x,

列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進貨量較少,則每個定價為70,應(yīng)進貨200,

(3)設(shè)每個定價增加x,獲得利潤為y,

y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,x=15,y有最大值為6250,所以每個定價為65元時得最大利潤,可獲得的最大利潤是6250.

型】解答
結(jié)束】
24

【題目】猜想與證明:

如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若MAF的中點,連接DM、ME,試猜想DMME的關(guān)系,并證明你的結(jié)論.

拓展與延伸:

(1)若將猜想與證明中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DMME的關(guān)系為   

(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前,某校九年級同學(xué)對“新冠疫情下停課不停學(xué)”線上學(xué)習(xí)的家長進行問卷調(diào)查,隨機調(diào)查了若干名家長對線上學(xué)習(xí)的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.反對;D.贊成).并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計圖1和扇形統(tǒng)計圖2(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長;

2)求出圖2中扇形C所對的圓心角度數(shù),并將圖1補充完整;

3)在此次調(diào)查活動中,初三(1)班有A1A2兩位家長對線上學(xué)習(xí),持基本贊成的態(tài)度,初三(2)班有B1、B2兩位學(xué)生家長對線上學(xué)習(xí),也持基本贊成的態(tài)度,現(xiàn)從這4位家長中選2位家長參加學(xué)校組織的家;顒樱昧斜矸ɑ虍嫎錉顖D的方法求出選出的2人來自不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形內(nèi)接于,點上兩點,且,若,則圖中陰影部分的面積為_____

查看答案和解析>>

同步練習(xí)冊答案