【題目】如圖,點(diǎn)C是⊙O的直徑AB延長(zhǎng)線上一點(diǎn),過(guò)⊙O上一點(diǎn)DDFABF,交⊙O于點(diǎn)E,點(diǎn)MBE的中點(diǎn),AB4,∠E=∠C30°

1)求證:CD是⊙O的切線;

2)求DM的長(zhǎng).

【答案】1)見(jiàn)解析;(2

【解析】

1)連接OD,由圓周角定理得出∠DOC2E60°,∠ODC180°﹣(∠DOC+C)=90°,即可得出結(jié)論;

2)連接OEOM,證明∠DOC=∠COE60°,由OBOE,點(diǎn)MBE的中點(diǎn),得出∠BOMCOE30°,OMBE,則∠DOM=∠DOC+BOM90°OMOBcosBOM,由勾股定理得DM=

1)證明:連接OD,如圖1所示:

∵∠E30°,

∴∠DOC2E60°,

∴∠DOC+C60°+30°90°

∴∠ODC180°﹣(∠DOC+C)=180°90°90°,即ODCD

OD是⊙O的半徑,

CD是⊙O的切線;

2)解:連接OE、OM,如圖2所示:

∵⊙O的直徑AB,AB4

OBOD2,

ODOEDFAB,

∴∠DOC=∠COE60°

OBOE,點(diǎn)MBE的中點(diǎn),

∴∠BOMCOE30°,OMBE,

∴∠DOM=∠DOC+BOM60°+30°90°

∵在RtOMB中,∠OMB90°,

OMOBcosBOM2cos30°,

由勾股定理得:DM==

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明投擲一次骰子,向上一面的點(diǎn)數(shù)記為,再投擲一次骰子,向上一面的點(diǎn)數(shù)記為,這樣就確定點(diǎn)的一個(gè)坐標(biāo),那么點(diǎn)落在雙曲線上的概率為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點(diǎn),過(guò)點(diǎn)Py軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線軸交于兩點(diǎn),與軸交于點(diǎn),若為銳角,則的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠C90°,AC8BC16,點(diǎn)D在邊BC上,點(diǎn)E在邊AB上,沿DEABC折疊,使點(diǎn)B與點(diǎn)A重合,連接AD,點(diǎn)P是線段AD上一動(dòng)點(diǎn),當(dāng)半徑為5的⊙PABC的一邊相切時(shí),AP的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片沿折疊,使點(diǎn)與點(diǎn)重合,再將沿折疊,使點(diǎn)恰好落在上的點(diǎn)處.若,則的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 兩點(diǎn)的坐標(biāo)分別為,點(diǎn)分別是直線x軸上的動(dòng)點(diǎn),,點(diǎn)是線段的中點(diǎn),連接軸于點(diǎn);當(dāng)⊿面積取得最小值時(shí),的值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O的內(nèi)接ABC中,∠CAB90°,AB2AC,過(guò)點(diǎn)ABC的垂線m交⊙O于另一點(diǎn)D,垂足為H,點(diǎn)E上異于A,B的一個(gè)動(dòng)點(diǎn),射線BE交直線m于點(diǎn)F,連接AE,連接DEBC于點(diǎn)G

1)求證:FED∽△AEB;

2)若,AC2,連接CE,求AE的長(zhǎng);

3)在點(diǎn)E運(yùn)動(dòng)過(guò)程中,若BGCG,求tanCBF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了迎接疫情徹底結(jié)束后的購(gòu)物高峰.某運(yùn)動(dòng)品牌專(zhuān)賣(mài)店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種運(yùn)動(dòng)鞋.其中甲、乙兩種運(yùn)動(dòng)鞋的進(jìn)價(jià)和售價(jià)如下表

運(yùn)動(dòng)鞋價(jià)格

進(jìn)價(jià)(/)

售價(jià)(/)

已知元購(gòu)進(jìn)甲種運(yùn)動(dòng)鞋的數(shù)量與用元購(gòu)進(jìn)乙種運(yùn)動(dòng)鞋的數(shù)量相同.

的值;

要使購(gòu)進(jìn)的甲、乙兩種運(yùn)動(dòng)鞋共雙的總利潤(rùn)(利潤(rùn)售價(jià)進(jìn)價(jià))不少于元,且甲種運(yùn)動(dòng)鞋的數(shù)量不超過(guò)雙,問(wèn)該專(zhuān)賣(mài)店共有幾種進(jìn)貨方案;

的條件下,專(zhuān)賣(mài)店準(zhǔn)備對(duì)甲種運(yùn)動(dòng)鞋進(jìn)行優(yōu)惠促銷(xiāo)活動(dòng),決定對(duì)甲種運(yùn)動(dòng)鞋每雙優(yōu)惠元出售,乙種運(yùn)動(dòng)鞋價(jià)格不變.那么該專(zhuān)賣(mài)店要獲得最大利潤(rùn)應(yīng)如何進(jìn)貨?

查看答案和解析>>

同步練習(xí)冊(cè)答案