【題目】目前,某校九年級同學(xué)對“新冠疫情下停課不停學(xué)”線上學(xué)習(xí)的家長進行問卷調(diào)查,隨機調(diào)查了若干名家長對線上學(xué)習(xí)的態(tài)度(態(tài)度分為:A.無所謂;B.基本贊成;C.反對;D.贊成).并將調(diào)查結(jié)果繪制成頻數(shù)折線統(tǒng)計圖1和扇形統(tǒng)計圖2(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了多少名中學(xué)生家長;

2)求出圖2中扇形C所對的圓心角度數(shù),并將圖1補充完整;

3)在此次調(diào)查活動中,初三(1)班有A1A2兩位家長對線上學(xué)習(xí),持基本贊成的態(tài)度,初三(2)班有B1、B2兩位學(xué)生家長對線上學(xué)習(xí),也持基本贊成的態(tài)度,現(xiàn)從這4位家長中選2位家長參加學(xué)校組織的家校活動,用列表法或畫樹狀圖的方法求出選出的2人來自不同班級的概率.

【答案】1200名;(218°,補圖見解析;(3

【解析】

1)用A類人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù);
2)先計算出C類的人數(shù),再利用360°乘以C類人數(shù)所占的百分比得到圖2中扇形C所對的圓心角度數(shù),然后補全頻數(shù)折線統(tǒng)計圖;
3)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),找出選出的2人來自不同班級的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:(130÷15%200,

所以共調(diào)查了200名中學(xué)生家長;

2C類人數(shù)為200304012010(人),

所以扇形C所對的圓心角度數(shù)=360°×18°;

頻數(shù)折線統(tǒng)計圖為:

3)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中選出的2人來自不同班級的結(jié)果數(shù)為8,

所以選出的2人來自不同班級的概率=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸交于兩點,與軸交于點,若為銳角,則的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接ABC中,∠CAB90°,AB2AC,過點ABC的垂線m交⊙O于另一點D,垂足為H,點E上異于A,B的一個動點,射線BE交直線m于點F,連接AE,連接DEBC于點G

1)求證:FED∽△AEB;

2)若AC2,連接CE,求AE的長;

3)在點E運動過程中,若BGCG,求tanCBF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解在校初中生閱讀數(shù)學(xué)文化史類書籍的現(xiàn)狀,隨機抽取了初中部部分學(xué)生進行研究調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成以下不完整的的統(tǒng)計圖表,請你根據(jù)圖表中的信息解答下列問題:

類別

人數(shù)

占總?cè)藬?shù)比例

重視

a

0.3

一般

57

0.38

不重視

b

C

說不清楚

9

0.06

1)求表格中ab,c的值,并補全統(tǒng)計圖;

2)若該校共有初中生2400名,請估計該校不重視閱讀數(shù)學(xué)文化史書籍的初中生人數(shù);

3)若小明和小華去書店,打算從A,B,CD四本數(shù)學(xué)文化史類書籍中隨機選取一本,請用畫樹狀圖或列表格的方法,求兩人恰好選中同一本書籍的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2009517日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累計確診病例人數(shù)如圖所示.

1)在517日至521日這5天中,日本平均每天新增加甲型H1N1流感確診病例多少人?如果接下來的5天中,繼續(xù)按這個平均數(shù)增加,那么到526日,日本甲型H1N1流感累計確診病例將會達到多少人?

2)甲型H1N1流感病毒的傳染性極強,某地因1人患了甲型H1N1流感沒有及時隔離治療,經(jīng)過兩天傳染后共有9人患了甲型H1N1流感,每天傳染中平均一個人傳染了幾個人?如果按照這個傳染速度,再經(jīng)過5天的傳染后,這個地區(qū)一共將會有多少人患甲型H1N1流感?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形ABCD中,∠B60°,動點P以每秒1個單位的速度自點A出發(fā)沿線段AB運動到點B,同時動點Q以每秒2個單位的速度自點B出發(fā)沿折線BCD運動到點D.圖2是點P、Q運動時,BPQ的面積S隨時間t變化關(guān)系圖象,則a的值是(  )

A.2B.2.5C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了迎接疫情徹底結(jié)束后的購物高峰.某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表

運動鞋價格

進價(/)

售價(/)

已知元購進甲種運動鞋的數(shù)量與用元購進乙種運動鞋的數(shù)量相同.

的值;

要使購進的甲、乙兩種運動鞋共雙的總利潤(利潤售價進價)不少于元,且甲種運動鞋的數(shù)量不超過雙,問該專賣店共有幾種進貨方案;

的條件下,專賣店準備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應(yīng)如何進貨?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:由兩條與x軸有著相同的交點,并且開口方向相同的拋物線所圍成的封閉曲線稱為月牙線.如圖,拋物線C1與拋物線C2組成一個開口向上的月牙線,拋物線C1與拋物線C2x軸有相同的交點M,N(點M在點N的左側(cè)),與y軸的交點分別為A,B且點A的坐標(biāo)為(0,﹣3),拋物線C2的解析式為ymx2+4mx12m,(m0).

1)請你根據(jù)月牙線的定義,設(shè)計一個開口向下.月牙線,直接寫出兩條拋物線的解析式;

2)求M,N兩點的坐標(biāo);

3)在第三象限內(nèi)的拋物線C1上是否存在一點P,使得PAM的面積最大?若存在,求出PAM的面積的最大值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】事業(yè)單位人員編制連進必考,現(xiàn)一事業(yè)單位需招聘一名員工,對應(yīng)聘者甲、乙、丙從筆試、面試、體能三個方而進行量化考核.甲、乙、丙各項得分如下表:

筆試

面試

體能

84

80

88

94

92

69

81

84

78

1)根據(jù)三項得分的平均分,從高到低確定三名應(yīng)聘者的排名順序;

2)該單位規(guī)定:筆試、面試、體能分分別不得低于80分,80分,70分,并按60%,30%10%的比例計入總分.根據(jù)規(guī)定,請你說明誰將被錄用.

查看答案和解析>>

同步練習(xí)冊答案