【題目】某市水果批發(fā)欲將A市的一批水果運往本市銷售,有火車和汽車兩種運輸方式,運輸過程中的損耗均為200/時,其它主要參考數(shù)據(jù)如下:

運輸工具

途中平均速度(千米/時)

運費(元/千米)

裝卸費用(元)

火車

100

15

2000

汽車

80

20

900

(1) 如果汽車的總支出費用比火車費用多1100元,你知道本市與A市之間的路程是多少千米嗎?請你列方程解答.(總支出包含損耗、運費和裝卸費用)

(2) 如果A市與B市之間的距離為S千米,你若是A市水果批發(fā)部門的經(jīng)理,要想將這種水果運往B市銷售,試分析以上兩種運輸工具中選擇哪種運輸方式比較合算呢?

【答案】(1) x400;(2) s200時,選擇火車運輸;當s200時,選擇汽車運輸;當s200時,兩種方式都一樣

【解析】

1)設路程為x千米,題中等量關系是:汽車的總支出費用比火車費用多1100元,列出方程解答;
2)根據(jù)(1)中結論分別算出火車和汽車所需的運費,再進行比較即可求解.

(1) 設本市與A市之間的路程是x千米

,

解得x400

(2) 火車的運輸費用為

汽車運輸?shù)馁M用為

17s200022.5s900,解得s200

s200時,選擇火車運輸

s200時,選擇汽車運輸

s200時,兩種方式都一樣

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線軸交于、兩點,,交軸于點,對稱軸是直線

(1)求拋物線的解析式及點的坐標;

(2)連接,是線段上一點,關于直線的對稱點正好落在上,求點的坐標;

(3)動點從點出發(fā),以每秒2個單位長度的速度向點運動,過軸的垂線交拋物線于點,交線段于點.設運動時間為秒.

①若相似,請直接寫出的值;

能否為等腰三角形?若能,求出的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明投擲一次骰子,向上一面的點數(shù)記為,再投擲一次骰子,向上一面的點數(shù)記為,這樣就確定點的一個坐標,那么點落在雙曲線上的概率為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】堅持節(jié)約資源和保護環(huán)境是我國的基本國策,國家要求加強生活垃圾分類回收與再生資源回收有效銜接,提高全社會資源產(chǎn)出率,構建全社會的資源循環(huán)利用體系.

1反映了2014—2019年我國生活垃圾清運量的情況.

2反映了2019年我國G市生活垃圾分類的情況.

根據(jù)以上材料回答下列問題:

1)圖2中,n的值為___________;

22014—2019年,我國生活垃圾清運量的中位數(shù)是_________

3)據(jù)統(tǒng)計,2019G市清運的生活垃圾中可回收垃圾約為0.02億噸,所創(chuàng)造的經(jīng)濟總價值約為40億元.若2019年我國生活垃圾清運量中,可回收垃圾的占比與G市的占比相同,根據(jù)G市的數(shù)據(jù)估計2019年我國可回收垃圾所創(chuàng)造的經(jīng)濟總價值是多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一張三角形紙片ABC,其中∠C=90AC=6,BC=8.小靜同學將紙片做兩次折疊:第一次使點A落在C處,折痕記為m;然后將紙片展平做第二次折疊,使點A落在B處,折痕記為n.則m,n的大小關系是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在趣味運動會定點投籃項目中,我校七年級八個班的投籃成績單位:個分別為:2420,1920,22,23,20,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是  

A. 22個、20 B. 22個、21 C. 20個、21 D. 20個、22

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點,過點Py軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;

(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線軸交于兩點,與軸交于點,若為銳角,則的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接ABC中,∠CAB90°,AB2AC,過點ABC的垂線m交⊙O于另一點D,垂足為H,點E上異于A,B的一個動點,射線BE交直線m于點F,連接AE,連接DEBC于點G

1)求證:FED∽△AEB;

2)若AC2,連接CE,求AE的長;

3)在點E運動過程中,若BGCG,求tanCBF的值.

查看答案和解析>>

同步練習冊答案