【題目】為促進新舊功能轉換,提高經(jīng)濟效益,某科技公司近期研發(fā)出一種新型高科技設備,每臺設備成本價為25萬元,經(jīng)過市場調(diào)研發(fā)現(xiàn),該設備的月銷售量(臺)和銷售單價(萬元)滿足如圖所示的一次函數(shù)關系.

1)求月銷售量與銷售單價的函數(shù)關系式;

2)根據(jù)相關規(guī)定,此設備的銷售單價不得高于35萬元,如果該公司想獲得130萬元的月利潤,那么該設備的銷售單價應是多少萬元?

【答案】(1)的函數(shù)關系式為;(2)該設備的銷售單價應是27 萬元.

【解析】

(1)根據(jù)圖像上點坐標,代入,用待定系數(shù)法求出即可.

2)根據(jù)總利潤=單個利潤銷售量列出方程即可.

解:(1)設的函數(shù)關系式為,

依題意,得解得

所以的函數(shù)關系式為

2)依題知

整理方程,得

解得

∵此設備的銷售單價不得高于35萬元,

(舍),所以

答:該設備的銷售單價應是27 萬元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某同學報名參加校運動會,有以下5個項目可供選擇:徑賽項目:100m,200m分別用、表示;田賽項目:跳遠,跳高分別用、表示

該同學從5個項目中任選一個,恰好是田賽項目的概率為______;

該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結果,并求恰好是一個田賽項目和一個徑賽項目的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的頂點ABx軸的正半軸上,反比例函數(shù)y=在第一象限內(nèi)的圖象與直線y=x交于點D,且反比例函數(shù)y=BC于點E,AD=3

1)求D點的坐標及反比例函數(shù)的關系式;

2)若矩形的面積是24,請寫出CDE的面積(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標為t.

(1)求拋物線的表達式;

(2)設拋物線的對稱軸為l,lx軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標;若不存在,請說明理由.

(3)如圖2,連接BC,PB,PC,設PBC的面積為S.

①求S關于t的函數(shù)表達式;

②求P點到直線BC的距離的最大值,并求出此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學課外活動小組準備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成。已知墻長為18(如圖所示),設這個苗圃園垂直于墻的一邊的長為x.

(1)若平行于墻的一邊長為y米,直接寫出yx的函數(shù)關系式及其自變量x的取值范圍.

(2)垂直于墻的一邊的長為多少米時,這個苗圃園的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,對角線AC的垂直平分線EF分別交BC,AD于點E,F,若BE=3,AF=5,則AC的長為(

A. B. C. 10D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.已知:在矩形中,是對角線,于點,于點;

1)如圖1,求證:

2)如圖2,當時,連接.,在不添加任何輔助線的情況下,請直接寫出圖2中四個三角形,使寫出的每個三角形的面積都等于矩形面積的.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】天門山索道是世界最長的高山客運索道,位于張家界天門山景區(qū).在一次檢修維護中,檢修人員從索道A處開始,沿ABC路線對索道進行檢修維護.如圖:已知米,米,AB與水平線的夾角是,BC與水平線的夾角是.求:本次檢修中,檢修人員上升的垂直高度是多少米?(結果精確到1米,參考數(shù)據(jù):)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,AB=AC,以AB為直徑作⊙O,分別交BC于點D,交CA的延長線于點E,過點D于點H,連接DE交線段OA于點F

1)試猜想直線DH與⊙O的位置關系,并說明理由;

2)若AE=AHEF=4,求DF的值.

查看答案和解析>>

同步練習冊答案