【題目】某同學(xué)報(bào)名參加校運(yùn)動會,有以下5個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m,200m,分別用、、表示;田賽項(xiàng)目:跳遠(yuǎn),跳高分別用、表示.
該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率為______;
該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率.
【答案】(1);(2).
【解析】
(1)由5個(gè)項(xiàng)目中田賽項(xiàng)目有2個(gè),直接利用概率公式求解即可求得答案;
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的情況,再利用概率公式即可求得答案.
(1)∵5個(gè)項(xiàng)目中田賽項(xiàng)目有2個(gè),∴該同學(xué)從5個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率為:.
故答案為:;
(2)畫樹狀圖得:
∵共有20種等可能的結(jié)果,恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的有12種情況,∴恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛轎車在經(jīng)過某路口的感應(yīng)線B和C處時(shí),懸臂燈桿上的電子警察拍攝到兩張照片,兩感應(yīng)線之間距離BC為6m,在感應(yīng)線B、C兩處測得電子警察A的仰角分別為∠ABD=18°,∠ACD=14°.求電子警察安裝在懸臂燈桿上的高度AD的長.
(參考數(shù)據(jù):sin14°≈0.242,cos14°≈0.97,tan14°≈0.25,sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線經(jīng)過點(diǎn)A,作AB⊥x軸于點(diǎn)B,將△ABO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°得到△CBD,若點(diǎn)B的坐標(biāo)為(1,0),則點(diǎn)C的坐標(biāo)為( 。
A.(3,)B.(,)C.(3,)D.(,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A,B分別在x軸,y軸上,點(diǎn)A的坐標(biāo)為(﹣1,0),∠ABO=30°,線段PQ的端點(diǎn)P從點(diǎn)O出發(fā),沿△OBA的邊按O→B→A→O運(yùn)動一周,同時(shí)另一端點(diǎn)Q隨之在x軸的非負(fù)半軸上運(yùn)動,如果PQ=,那么當(dāng)點(diǎn)P運(yùn)動一周時(shí),點(diǎn)Q運(yùn)動的總路程為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計(jì)概率”的試驗(yàn)時(shí),繪出的某一結(jié)果出現(xiàn)的頻率折線圖,則符合這一結(jié)果的試驗(yàn)可能是( 。
A.拋一枚硬幣,出現(xiàn)正面朝上
B.擲一個(gè)正六面體的骰子,出現(xiàn)3點(diǎn)朝上
C.任意畫一個(gè)三角形,其內(nèi)角和是360°
D.從一個(gè)裝有2個(gè)紅球1個(gè)黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1:在Rt△ABC中,AB=AC,D為BC邊上一點(diǎn)(不與點(diǎn)B,C重合),試探索AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論.小明同學(xué)的思路是這樣的:將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到線段AE,連接EC,DE.繼續(xù)推理就可以使問題得到解決.
(1)請根據(jù)小明的思路,試探索線段AD,BD,CD之間滿足的等量關(guān)系,并證明你的結(jié)論;
(2)如圖2,在Rt△ABC中,AB=AC,D為△ABC外的一點(diǎn),且∠ADC=45°,線段AD,BD,CD之間滿足的等量關(guān)系又是如何的,請證明你的結(jié)論;
(3)如圖3,已知AB是⊙O的直徑,點(diǎn)C,D是⊙O上的點(diǎn),且∠ADC=45°.
①若AD=6,BD=8,求弦CD的長為 ;
②若AD+BD=14,求的最大值,并求出此時(shí)⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上兩點(diǎn)的距離為4,一動點(diǎn)從點(diǎn)出發(fā),按以下規(guī)律跳動:第1次跳動到的中點(diǎn)處,第2次從點(diǎn)跳動到的中點(diǎn)處,第3次從點(diǎn)跳動到的中點(diǎn)處.按照這樣的規(guī)律繼續(xù)跳動到點(diǎn)(,是整數(shù))處,那么線段的長度為_______(,是整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)P為AB延長線上的一點(diǎn),過點(diǎn)P作⊙O的切線PE,切點(diǎn)為M,過A、B兩點(diǎn)分別作PE的垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是___________.(寫出所有正確結(jié)論的序號)
①AM平分∠CAB;
②AM2=ACAB;
③若AB=4,∠APE=30°,則的長為;
④若AC=3,BD=1,則有CM=DM=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為促進(jìn)新舊功能轉(zhuǎn)換,提高經(jīng)濟(jì)效益,某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺設(shè)備成本價(jià)為25萬元,經(jīng)過市場調(diào)研發(fā)現(xiàn),該設(shè)備的月銷售量(臺)和銷售單價(jià)(萬元)滿足如圖所示的一次函數(shù)關(guān)系.
(1)求月銷售量與銷售單價(jià)的函數(shù)關(guān)系式;
(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷售單價(jià)不得高于35萬元,如果該公司想獲得130萬元的月利潤,那么該設(shè)備的銷售單價(jià)應(yīng)是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com