已知
a+2
+b2+16=8b,求a+b的值.
考點(diǎn):配方法的應(yīng)用,非負(fù)數(shù)的性質(zhì):偶次方,非負(fù)數(shù)的性質(zhì):算術(shù)平方根
專題:計(jì)算題,配方法
分析:先移項(xiàng)得到
a+2
+b2-8b+16=0,再利用配方法得到
a+2
+(b-4)2=0,根據(jù)非負(fù)數(shù)的性質(zhì)得a+2=0,b-4=0,然后求出a和b的值后再求它們的和即可.
解答:解:∵
a+2
+b2+16=8b,
a+2
+b2-8b+16=0,
a+2
+(b-4)2=0,
∴a+2=0,b-4=0,
∴a=-2,b=4,
∴a+b=-2+4=2.
點(diǎn)評:本題考查了配方法:配方法的理論依據(jù)是公式a2±2ab+b2=(a±b)2.也考查了非負(fù)數(shù)的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

直線y=-2x+4與x軸和y軸分別交于A,B兩點(diǎn),若點(diǎn)M為y=mx在第一象限上的點(diǎn),且△ABM是等腰直角三角形,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知⊙O1、⊙O2外切于點(diǎn)P,AB是一條外公切線,A、B為切點(diǎn).
(1)連接AP、BP,證明:AP⊥BP;
(2)連接BO2并延長交⊙O2于點(diǎn)D,過D引⊙O1的切線,切點(diǎn)為C,證明:CD=BD.
(3)設(shè)⊙O1、⊙O2的半徑分別為1和3,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P是正方形ABCD內(nèi)一點(diǎn),以正方形ABCD的一條邊做為對角線,點(diǎn)P與這條邊的兩個(gè)端點(diǎn)作平行四邊形,依次得點(diǎn)E、F、G、H,求證:四邊形EFGH是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,AD是BC邊上的中線,四邊形ADBE是平行四邊形,求證:四邊形ADBE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

A、B兩地相距64千米,甲、乙兩人騎自行車分別從A、B兩地相向而行,乙比甲每小時(shí)多行4千米,如果甲比乙先行40分鐘,那么兩人相遇時(shí)所行路程恰好相等,甲、乙兩人騎車的速度各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的二次函數(shù)y=-x2+﹙2m+2﹚x-﹙m2+4m-3﹚,m是非負(fù)整數(shù),圖象與x軸交于點(diǎn)A和點(diǎn)B,點(diǎn)A、B分別在原點(diǎn)的左、右兩邊,點(diǎn)A在點(diǎn)B右側(cè).
﹙1﹚求該二次函數(shù)的解析式;
﹙2﹚一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A,與這個(gè)二次函數(shù)的圖象交于點(diǎn)C,且△ABC的面積為10,求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,BF、DE相交于點(diǎn)A,BG交BF于點(diǎn)B,交AC于點(diǎn)C.
(1)指出ED、BC被BF所截的同位角,內(nèi)錯(cuò)角,同旁內(nèi)角;
(2)指出ED、BC被AC所截的內(nèi)錯(cuò)角,同旁內(nèi)角;
(3)指出FB、BC被AC所截的內(nèi)錯(cuò)角,同旁內(nèi)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠B=30°,∠C=45°,則AB:BC:AC=
 

查看答案和解析>>

同步練習(xí)冊答案