【題目】為解決“最后一公里”的交通接駁問題,某市投放了大量公租自行車使用,到2014年底,全市已有公租自行車25000輛,租賃點600個,預計到2016年底,全市將有公租自行車50000輛,并且平均每個租賃點的公租自行車數(shù)量是2014年底平均每個租賃點的公租自行車數(shù)量的1.2倍,預計到2016年底,全市將有租賃點多少個?
科目:初中數(shù)學 來源: 題型:
【題目】京廣高速鐵路工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書.從投標書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的;若由甲隊先做10天,剩下的工程再由甲、乙兩隊合作30天完成.
(1)求甲、乙兩隊單獨完成這項工程各需多少天?
(2)已知甲隊每天的施工費用為8.4萬元,乙隊每天的施工費用為5.6萬元.工程預算的施工費用為500萬元.為縮短工期并高效完成工程,擬安排預算的施工費用是否夠用?若不夠用,需追加預算多少萬元?請給出你的判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016廣西南寧市)在南寧市地鐵1號線某段工程建設中,甲隊單獨完成這項工程需要150天,甲隊單獨施工30天后增加乙隊,兩隊又共同工作了15天,共完成總工程的.
(1)求乙隊單獨完成這項工程需要多少天?
(2)為了加快工程進度,甲、乙兩隊各自提高工作效率,提高后乙隊的工作效率是,甲隊的工作效率是乙隊的m倍(1≤m≤2),若兩隊合作40天完成剩余的工程,請寫出a關于m的函數(shù)關系式,并求出乙隊的最大工作效率是原來的幾倍?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題:
老舍先生曾說“天堂是什么樣子,我不曉得,但從我的生活經驗去判斷,北平之秋便是天堂!保ㄕ浴蹲〉膲簟罚┙瘘S色的銀杏葉為北京的秋增色不少。
小宇家附近新修了一段公路,他想給市政寫信,建議在路的兩邊種上銀杏樹。他先讓爸爸開車駛過這段公路,發(fā)現(xiàn)速度為60千米/小時,走了約3分鐘,由此估算這段路長約_______千米。
然后小宇查閱資料,得知銀杏為落葉大喬木,成年銀杏樹樹冠直徑可達8米。小宇計劃從路的起點開始,每a米種一棵樹,繪制示意圖如下:
考慮到投入資金的限制,他設計了另一種方案,將原計劃的a擴大一倍,則路的兩側共計減少200棵樹,請你求出a的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖,在中,,于點D.可知:不需要證明;
特例探究:如圖,,射線AE在這個角的內部,點B、C在的邊AM、AN上,且,于點F,于點證明:≌;
歸納證明:如圖,點B,C在的邊AM、AN上,點E,F在內部的射線AD上,、分別是、的外角已知,求證:≌;
拓展應用:如圖,在中,,點D在邊BC上,,點E、F在線段AD上,若的面積為24,則與的面積之和為______直接寫出結果
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料后完成.
有這樣一個游戲,游戲規(guī)則如下所述:如圖①—圖④,都是邊 長為的網格圖,其中每條實線稱為格線,格線與格線的交 點稱為格點.在圖①和圖②中,可知.在圖③ 和圖④中,可知. 根據(jù)上面的游戲規(guī)則,同學們開始闖關吧! 第一關:在圖⑤的網格圖中,所給各點均為格點,經過 給定的一點(不包括邊框上的點),在圖中畫出一條與線段垂直 的線段(或者直線),再畫出與線段平行的一條線段(或者 直線). 第二關:在圖⑥的網格圖中,所給各點均為格點,經過 兩對給定的點,構造兩條互相垂直的直線.(在圖中直接畫出)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知兩點A(3,0),B(0,4),點C在第一象限,AB⊥BC,BC=BA,點P在線段OB上,OP=OA,AP的延長線與CB的延長線交于點M,AB與CP交于點N.
(1)點C的坐標為: ;
(2)求證:BM=BN;
(3)設點C關于直線AB的對稱點為D,點C關于直線AP的對稱點為G,求證:D,G關于x軸對稱.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在任意四邊形ABCD中,M,N,P,Q分別是AB,BC,CD,DA上的點,對于四邊形MNPQ的形狀,以下結論中,錯誤的是
A. 當M,N,P,Q是各邊中點,四邊MNPQ一定為平行四邊形
B. 當M,N,P,Q是各邊中點,且時,四邊形MNPQ為正方形
C. 當M,N、P,Q是各邊中點,且時,四邊形MNPQ為菱形
D. 當M,N、P、Q是各邊中點,且時,四邊形MNPQ為矩形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的推理過程,在括號內填上推理的依據(jù),如圖:
∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com