【題目】在東營(yíng)市中小學(xué)標(biāo)準(zhǔn)化建設(shè)工程中,某學(xué)校計(jì)劃購進(jìn)一批電腦和電子白板,經(jīng)過市場(chǎng)考察得知,購買1臺(tái)電腦和2臺(tái)電子白板需要3.5萬元,購買2臺(tái)電腦和1臺(tái)電子白板需要2.5萬元.

1)求每臺(tái)電腦、每臺(tái)電子白板各多少萬元?

2)根據(jù)學(xué)校實(shí)際,需購進(jìn)電腦和電子白板共30臺(tái),總費(fèi)用不超過30萬元,但不低于28萬元,請(qǐng)你通過計(jì)算求出有幾種購買方案,哪種方案費(fèi)用最低.

【答案】1)每臺(tái)電腦0.5萬元,每臺(tái)電子白板1.5萬元(2見解析

【解析】解:(1)設(shè)每臺(tái)電腦x萬元,每臺(tái)電子白板y萬元,根據(jù)題意得:

解得:。

答:每臺(tái)電腦0.5萬元,每臺(tái)電子白板1.5萬元。

2)設(shè)需購進(jìn)電腦a臺(tái),則購進(jìn)電子白板(30a)臺(tái),

,解得:,即a=1516,17

故共有三種方案:

方案一:購進(jìn)電腦15臺(tái),電子白板15臺(tái).總費(fèi)用為萬元;

方案二:購進(jìn)電腦16臺(tái),電子白板14臺(tái).總費(fèi)用為萬元;

方案三:購進(jìn)電腦17臺(tái),電子白板13臺(tái).總費(fèi)用為萬元。

∴方案三費(fèi)用最低。

1)設(shè)電腦、電子白板的價(jià)格分別為x,y元,根據(jù)等量關(guān)系:“1臺(tái)電腦+2臺(tái)電子白板=3.5萬元,“2臺(tái)電腦+1臺(tái)電子白板=2.5萬元,列方程組求解即可。

2)設(shè)計(jì)方案題一般是根據(jù)題意列出不等式組,求不等式組的整數(shù)解。設(shè)購進(jìn)電腦x臺(tái),電子白板有(30x)臺(tái),然后根據(jù)題目中的不等關(guān)系總費(fèi)用不超過30萬元,但不低于28萬元列不等式組解答。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CBy,y軸負(fù)半軸于B(0,b),(a-3)2+|b+4|=0,S四邊形AOBC=16.

(1)求C點(diǎn)坐標(biāo);

(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)ADAC時(shí),ODA的角平分線與∠CAE的角平分線的反向延長(zhǎng)線交于點(diǎn)P,求∠APD的度數(shù).

(3)如圖3,當(dāng)D點(diǎn)在線段OB上運(yùn)動(dòng)時(shí),DMADBCM點(diǎn),BMD、DAO的平分線交于N點(diǎn),D點(diǎn)在運(yùn)動(dòng)過程中,N的大小是否變化?若不變,求出其值,若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過對(duì)某校營(yíng)養(yǎng)午餐的檢測(cè),得到如下信息:每份營(yíng)養(yǎng)午餐的總質(zhì)量;午餐的成分

為蛋白質(zhì)、碳水化合物、脂肪和礦物質(zhì),其組成成分所占比例如圖所示;其中礦物質(zhì)的含量是脂

肪含量的倍,蛋白質(zhì)和碳水化合物含量占

)設(shè)其中蛋白質(zhì)含量是.脂肪含量是,請(qǐng)用含的代數(shù)式分別表示碳水化合物和礦物

質(zhì)的質(zhì)量.

)求每份營(yíng)養(yǎng)午餐中蛋白質(zhì)、碳水化合物、脂肪和礦物質(zhì)的質(zhì)量.

)參考圖,請(qǐng)?jiān)趫D中完成這四種不同成分所占百分比的扇形統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件不能用來判定四邊形ABCD是平行四邊形的是(  )

A. ∠A:∠B:∠C:∠D=1:4:1:4 B. AB∥CD,AD=BC

C. AB=CD,AD=BC D. AB∥CD,AD∥CB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延長(zhǎng)CA到O,使AO=AC,以O(shè)為圓心,OA長(zhǎng)為半徑作⊙O交BA延長(zhǎng)線于點(diǎn)D,連接CD.
(1)求證:CD是⊙O的切線;
(2)若AB=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC, AD是∠BAC的平分線,AD⊥BC, CE⊥AB.CE交AD于點(diǎn)F,AE=CE.

(1)你能說明△AEF與△CEB全等嗎?

(2)若AF=12cm,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B、E分別在ACDF上,AF分別交BDCE于點(diǎn)M、N,∠A=∠F,∠1=∠2.

(1)求證:四邊形BCED是平行四邊形;

(2)已知DE=2,連接BN,若BN平分DBC,求CN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果店以4元/千克的價(jià)格購進(jìn)一批水果,由于銷售狀況良好,該店又再次購進(jìn)同一種水果,第二次進(jìn)貨價(jià)格比第一次每千克便宜了0.5元,所購水果重量恰好是第一次購進(jìn)水果重量的2倍,這樣該水果店兩次購進(jìn)水果共花去了2200元.

(1)該水果店兩次分別購買了多少元的水果?

(2)在銷售中,盡管兩次進(jìn)貨的價(jià)格不同,但水果店仍以相同的價(jià)格售出,若第一次購進(jìn)的水果有3%的損耗,第二次購進(jìn)的水果有5%的損耗,該水果店希望售完這些水果獲利不低于1244元,則該水果每千克售價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),是兩個(gè)全等的直角三角形(直角邊分別為a,b,斜邊為c

1)用這樣的兩個(gè)三角形構(gòu)造成如圖(2)的圖形,利用這個(gè)圖形,證明:a2+b2=c2

2)用這樣的兩個(gè)三角形可以拼出多種四邊形,畫出周長(zhǎng)最大的四邊形;當(dāng)a=2,b=4時(shí),求這個(gè)四邊形的周長(zhǎng);

3)當(dāng)a=1,b=2時(shí),將其中一個(gè)直角三角形放入平面直角坐標(biāo)系中(如圖(3)),使直角頂點(diǎn)與原點(diǎn)重合,兩直角邊a,b分別與x軸、y軸重合.

①請(qǐng)?jiān)?/span>x軸、y軸上找一點(diǎn)C,使ABC為等腰三角形;(要求:用尺規(guī)畫出所有符合條件的點(diǎn),并用C1C2,Cn在圖中標(biāo)出所找的點(diǎn).只保留作圖痕跡,不寫作法)

②寫出一個(gè)滿足條件的在x軸上的點(diǎn)的坐標(biāo):_____,寫出一個(gè)滿足條件的在y軸上的點(diǎn)坐標(biāo):_____

查看答案和解析>>

同步練習(xí)冊(cè)答案