【題目】如圖,在矩形ABCD中,AB=3,BC=4.M、N在對(duì)角線AC上,且AM=CN,E、F分別是AD、BC的中點(diǎn).
(1)求證:△ABM≌△CDN;
(2)點(diǎn)G是對(duì)角線AC上的點(diǎn),∠EGF=90°,求AG的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)AG的長(zhǎng)為1或4.
【解析】
(1)根據(jù)四邊形的性質(zhì)得到AB∥CD,求得∠MAB=∠NCD.根據(jù)全等三角形的判定定理得到結(jié)論;
(2)連接EF,交AC于點(diǎn)O.根據(jù)全等三角形的性質(zhì)得到EO=FO,AO=CO,于是得到結(jié)論.
(1)證明∵四邊形ABCD是矩形,∴AB∥CD,∴∠MAB = ∠NCD.
在△ABM和△CDN中,
∴△ABM≌△CDN;
(2)解:如圖,連接EF,交AC于點(diǎn)O.
在△AEO和△CFO中,
∴△AEO≌△CFO,∴EO=FO,AO=CO,∴O為EF、AC中點(diǎn).
∵∠EGF=90°,,∴AG=OA-OG =1或AG=OA+OG=4,
∴AG的長(zhǎng)為1或4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購(gòu)買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.
(1)求足球和籃球的單價(jià)各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購(gòu)買足球和籃球共20個(gè),但要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)1550元,學(xué)校最多可以購(gòu)買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)D是等邊△ABC(即三條邊都相等,三個(gè)角都相等的三角形)邊BA上任意一點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC.
(1)如圖1,以DC為邊在BC上方作等邊△DCF,連接AF,猜想線段AF與BD的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
(2)如圖2,若以DC為邊在BC上方、下方分別作等邊△DCF和等邊△DCF′,連接AF、BF′,探究AF、BF′與AB有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AC、BD相交于點(diǎn)O,AE平分∠BAD,交BC于E,若∠EAO=15°,則∠BOE的度數(shù)為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)θ度,并使各邊長(zhǎng)變?yōu)樵瓉?lái)的n倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)、如圖①,對(duì)△ABC作變換[50°,]得△AB′C′,則S△AB′C′:S△ABC= ;直線BC與直線B′C′所夾的銳角為 度;
(2)、如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對(duì)△ABC 作變換[θ,n]得△AB'C',使點(diǎn)B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)、如圖③,△ABC中,AB=AC,∠BAC=36°,BC=l,對(duì)△ABC作變換[θ,n]得△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)方形ABCD沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)E處,BE交AD于點(diǎn)F,已知∠BDC=62°,則∠DFE的度數(shù)為( )
A. 62°B. 56°C. 31°D. 28°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 是半圓的直徑,點(diǎn)是延長(zhǎng)線上 一點(diǎn), 是⊙的切線,切點(diǎn)為,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),連接.求證:
().
().
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將三角形ABC向右平移5個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度請(qǐng)回答下列問(wèn)題:
(1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:A1 ,B1 ,C1 ;
(2)畫(huà)出平移后三角形A1B1C1;
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形中,是的中點(diǎn),連接并延長(zhǎng),交的延長(zhǎng)線于點(diǎn).
(1)求證:;
(2)連接,,當(dāng)_______°時(shí),四邊形是正方形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com