【題目】如圖,點MAB的中點,點PMB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結(jié)MDME.設(shè)AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________

【答案】35

【解析】

根據(jù)題意知,陰影部分的面積等于兩個正方形的面積減去兩個三角形的面積,由給出的條件即可求出陰影部分的面積

AP=a,BP=b

∴正方形APCD的面積S1= a2 正方形PBEF的面積S2=b2

∵點MAB的中點

AM=MB=AB=(a+b)

SADM=AM×DA=×(a+b) ×a=(a2+ab)

SMBE=MB×BE=×(a+b) ×b=(b2+ab)

S陰影= S1+ S2- SADM- SMBE

= a2+ b2-(a2+ab)-(b2+ab)

= a2+ b2- ab

=(a+b)2-2ab

=×102-2×20

=75-40

=35.

故答案為:35.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,M是ABC的邊BC的中點,AN平分BAC,BNAN于點N,延長BN交AC于點D,已知AB=10,BC=15,MN=3

(1)求證:BN=DN;

(2)求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DAC+∠ACB=180°,EF//BC,CE平分BCFDAC=3∠BCF,ACF=20°,則FEC的度數(shù)是(  )

A.10°B.20°C.15°D.30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:ADBCD,EGBCG,∠E=1,求證:AD平分∠ABC.下面是部分推理過程,請你將其補充完整:

ADBCDEGBC(已知)

∴∠ADC=EGC=90°

EGAD

∴∠E=________ )、

1=__________

又∵∠E=1(已知)

∴∠2=3

AD平分∠BAC。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,從邊長為a的正方形紙片中減去一個邊長為b的小正方形,再沿著線段AB剪開,把剪成的兩張紙拼成如圖2的等腰梯形(其面積= ).

(1)設(shè)圖1中陰影部分面積為S1,圖2中陰影部分面積為S2,請直接用含a、b的式子表示S1和S2

(2)請寫出上述過程所揭示的乘法公式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC,AB=AC,D為BC上一點,E為AC上一點,AD=AE.

(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC=   °.

(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD=   °,∠CDE=   °.

(3)設(shè)∠BAD=α,∠CDE=β猜想α,β之間的關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃用元從廠家進臺新型電子產(chǎn)品,已知該廠家生產(chǎn)甲、乙、丙三種不同型號的電子產(chǎn)品,其中甲型/臺,每臺獲利元;乙型/臺,每臺獲利元;丙型/臺,每臺獲利元.設(shè)甲、乙型設(shè)備應各買入,臺:

1)購買丙型設(shè)備 臺(用含,的代數(shù)式表示);

2)若商場同時購進三種不同型號的電子產(chǎn)品(每種型號至少有一臺),恰好用了元,則商場有哪幾種購進方案?

3)在第(2)題的基礎(chǔ)上,為了使銷售時獲利最多,應選擇哪種購進方案?此時獲利為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(π﹣3.14)0+| ﹣1|﹣( 1﹣2sin45°+(﹣1)2016

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點為D,AB經(jīng)過圓心O并與圓相交于點E,連接AD.

(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案