【題目】如圖,拋物線與軸交于,,兩點(點在點的左側(cè)),與軸交于點,且,的平分線交軸于點,過點且垂直于的直線交軸于點,點是軸下方拋物線上的一個動點,過點作軸,垂足為,交直線于點.
(1)求拋物線的解析式;
(2)設(shè)點的橫坐標為,當時,求的值;
(3)當直線為拋物線的對稱軸時,以點為圓心,為半徑作,點為上的一個動點,求的最小值.
【答案】(1)yx2x﹣3;(2);(3).
【解析】
對于(1),結(jié)合已知先求出點B和點C的坐標,再利用待定系數(shù)法求解即可;
對于(2),在Rt△OAC中,利用三角函數(shù)的知識求出∠OAC的度數(shù),再利用角平分線的定義求出∠OAD的度數(shù),進而得到點D的坐標;接下來求出直線AD的解析式,表示出點P,H,F的坐標,再利用兩點間的距離公式可完成解答;對于(3),首先求出⊙H的半徑,在HA上取一點K,使得HK=14,此時K(-,);然后由HQ2=HK·HA,得到△QHK∽△AHQ,再利用相似三角形的性質(zhì)求出KQ=AQ,進而可得當E、Q、K共線時,AQ+EQ的值最小,據(jù)此解答.
(1)由題意A(,0),B(﹣3,0),C(0,﹣3),設(shè)拋物線的解析式為y=a(x+3)(x),把C(0,﹣3)代入得到a,∴拋物線的解析式為yx2x﹣3.
(2)在Rt△AOC中,tan∠OAC,∴∠OAC=60°.
∵AD平分∠OAC,∴∠OAD=30°,∴OD=OAtan30°=1,∴D(0,﹣1),∴直線AD的解析式為yx﹣1,由題意P(m,m2m﹣3),H(m,m﹣1),F(m,0).
∵FH=PH,∴1m﹣1﹣(m2m﹣3)
解得m或(舍棄),∴當FH=HP時,m的值為.
(3)如圖,∵PF是對稱軸,∴F(,0),H(,﹣2).
∵AH⊥AE,∴∠EAO=60°,∴EOOA=3,∴E(0,3).
∵C(0,﹣3),∴HC2,AH=2FH=4,∴QHCH=1,在HA上取一點K,使得HK,此時K().
∵HQ2=1,HKHA=1,∴HQ2=HKHA,∴.
∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQAQ,∴AQ+QE=KQ+EQ,∴當E、Q、K共線時,AQ+QE的值最小,最小值.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知EK垂直平分BC,垂足為D,AB與EK相交于點F,連接CF.求證:∠AFE=∠CFD.
(2)如圖2,在Rt△GMN中,∠M=90°,P為MN的中點.
①用直尺和圓規(guī)在GN邊上求作點Q,使得∠GQM=∠PQN(保留作圖痕跡,不要求寫作法);
②在①的條件下,如果∠G=60°,那么Q是GN的中點嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD中,O是AC、BD的交點,過點O 與AC垂直的直線交邊AD于點E,若□ABCD的周長為22cm,則△CDE的周長為( ).
A. 8cm B. 10cm C. 11cm D. 12cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠MAN=120°,AC平分∠MAN,點B、D分別在AN、AM上.
(1)如圖1,若∠ABC=∠ADC=90°,請你探索線段AD、AB、AC之間的數(shù)量關(guān)系,并證明之;
(2)如圖2,若∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,E是AB上一點,F是AD延長線上一點,且DF=BE.求證:CE=CF;
(2)如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD.
(3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:
如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE="10," 求直角梯形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=4.
(1)求證:PC是⊙O的切線.
(2)求tan∠CAB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點D在EG上運動,則△CDF周長的最小值為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)矩形ABCO得到矩形AFED.
(1)如圖1,當點D落在邊BC上時,求BD的長(用a的式子表示);
(2)如圖2,當a=3時,矩形AFED的對角線AE交矩形ABCO的邊BC于點G,連結(jié)CE,若△CGE是等腰三角形,求直線BE的解析式;
(3)如圖3,矩形ABCO的對稱中心為點P,當P,B關(guān)于AD對稱時,求出a的值,此時在x軸、y軸上是否分別存在M,N使得四邊形EFMN為平行四邊形,若存在直接寫出M,N坐標,不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com