【題目】在□ABCD中,O是AC、BD的交點,過點O 與AC垂直的直線交邊AD于點E,若□ABCD的周長為22cm,則△CDE的周長為( ).
A. 8cm B. 10cm C. 11cm D. 12cm
科目:初中數(shù)學 來源: 題型:
【題目】探索發(fā)現(xiàn):如圖是一種網(wǎng)紅彈弓的實物圖,在兩頭上系上皮筋,拉動皮筋可形成平面示意圖如圖1圖2,彈弓的兩邊可看成是平行的,即AB∥CD.各活動小組探索∠APC 與∠A,∠C之間的數(shù)量關系.已知AB∥CD,點P不在直線AB和直線CD上,在圖1中,智慧小組發(fā)現(xiàn):∠APC=∠A+∠C.
智慧小組是這樣思考的:過點 P 作 PQ∥AB,……
(1)請你按照智慧小組作的輔助線完成證明過程.
(2)①在圖2中,猜測∠APC與∠A,∠C 之間的數(shù)量關系,并完成證明.
②如圖3,已知AB∥CD,則角α、β、γ之間的數(shù)量關系為 .(直接填空)
(3)善思小組提出:如圖4,圖5.AB∥CD,AF,CF分別平分∠BAP,∠DCP
①在圖4中,猜測∠AFC與∠APC之間的數(shù)量關系,并證明.
②在圖5中,∠AFC與∠APC之間的數(shù)量關系為 .(直接填空)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1:y1=-x+m與y軸交于點A(0,6),直線l2:y2=kx+1分別與x軸交于點B(-2,0),與y軸交于點C,兩條直線l1、l2相交于點D,連接AB.
(1)求兩直線l1、l2交點D的坐標;
(2)求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某社區(qū)購買甲、乙兩種樹苗進行綠化,已知甲種樹苗每棵30元,乙種樹苗每棵20元,且乙種樹苗棵數(shù)比甲種樹苗棵數(shù)的2倍少40棵,購買兩種樹苗的總金額為9000元.
(1)求購買甲、乙兩種樹苗各多少棵?
(2)為保證綠化效果,社區(qū)決定再購買甲、乙兩種樹苗共10棵,總費用不超過230元,求可能的購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線 與x軸交于點A,與直線 y=kx-3交于點C(c,6),直線 與y軸交于點B,連接AB.
(1)求k的值;
(2)求證:∠CAO=∠BAO;
(3)P為OA上一點,連結(jié)PB,M為PB中點,延長MO交直線AC于點N,若OP=x, ,求y關于x的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t(分)之間的關系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了32分鐘;
③乙用16分鐘追上甲;
④乙到達終點時,甲離終點還有300米
其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,∠B=45°,過點C作CE⊥AD于點,連結(jié)AC,過點D作DF⊥AC于點F,交CE于點G,連結(jié)EF.
(1)若DG=8,求對角線AC的長;
(2)求證:AF+FG=EF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,將一塊等腰直角三角形的直角頂點放在斜邊的中點處,將三角板繞點旋轉(zhuǎn),三角板的兩直角邊分別交射線、于、兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
(1)觀察圖①,當三角板繞點旋轉(zhuǎn)到時,我們發(fā)現(xiàn):__________.(選填“”、“”或“”)
(2)當三角板繞點旋轉(zhuǎn)到圖②所示位置時,判斷(1)題中與之間的大小關系還存在嗎?請你結(jié)合圖②說明理由.
(3)三角板繞點旋轉(zhuǎn),是否能成為等腰三角形?若能,指出所有情況(那寫出為等腰三角形時的長);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com