【題目】已知如圖所示,△AOB與△COD關(guān)于點O成中心對稱,連接BC,AD.

(1)求證:四邊形ABCD為平行四邊形;

(2)若△AOB的面積為15 cm2,求四邊形ABCD的面積.

【答案】(1)證明見解析;(2)60 cm2.

【解析】試題分析:根據(jù)成中心對稱圖形的性質(zhì)知OA=OC,OB=OD.根據(jù)平行四邊形對角線互相平分,所以可以得到四邊形ABCD為平行四邊形;△AOB的面積為15 cm2,則△ABC面積等于△AOB面積的2倍,因為點O為平行四邊形的中心,所以△ABC的高等于△AOB高的2倍,所以SABC =30,所以四邊形ABCD的面積是60.

(1)∵AOB與△COD關(guān)于點O成中心對稱,∴OA=OC,OB=OD.

∴四邊形ABCD為平行四邊形.

(2)四邊形ABCD的面積為60 cm2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】列方程解應用題:

中華優(yōu)秀傳統(tǒng)文化是中華民族的“根”和“魂”,是我們必須世代傳承的文化根脈、文化基因.為傳承優(yōu)秀傳統(tǒng)文化,某校為各班購進《三國演義》和《水滸傳》連環(huán)畫若干套,其中每套《三國演義》連環(huán)畫的價格比每套《水滸傳》連環(huán)畫的價格貴60元,用4800元購買《水滸傳》連環(huán)畫的套數(shù)是用3600元購買《三國演義》連環(huán)畫套數(shù)的2倍,求每套《水滸傳》連環(huán)畫的價格.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全民健身和醫(yī)療保健是社會普遍關(guān)注的問題.2014年,某社區(qū)共投入30萬元用于購買健身器材和藥品.2015年,該社區(qū)購買健身器材的費用比上一年增加50%,購買藥品的費用比上一年減少,但社區(qū)在這兩方面的總投入仍與2014年相同.

(1)2014年社區(qū)購買藥品的總費用;

(2)據(jù)統(tǒng)計,2014年該社區(qū)積極健身的家庭達到200戶,但其藥品費用明顯減少,只占當年購買藥品總費用的.2014年相比,如果2015年社區(qū)內(nèi)健身家庭戶數(shù)增加的百分數(shù)與平均每戶健身家庭的藥品費用降低的百分數(shù)相同,那么,2015年該社區(qū)用于健身家庭的藥品費用就是當年購買健身器材費用的.2015年該社區(qū)健身家庭的戶數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解題:

定義:如果一個數(shù)的平方等于-1,記為i2=-1,這個數(shù)i叫做虛數(shù)單位.那么和我們所學的實數(shù)對應起來就叫做復數(shù),表示為a+bi(a,b為實數(shù)),a叫這個復數(shù)的實部,b叫做這個復數(shù)的虛部,它的加,減,乘法運算與整式的加,減,乘法運算類似.

例如計算:(5+i)×(3-4i)=19-17i.

(1)填空:i3= ,i4= .

(2)計算:(3+i)2

(3)試一試:請利用以前學習的有關(guān)知識將化簡成a+bi的形式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,并完成填空.

你能比較20152 016和20162 015的大小嗎?

為了解決這個問題,先把問題一般化,比較nn+1和(n+1)n(n≥1,且n為整數(shù))的大。缓髲姆治鰊=1,n=2,n=3…的簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納、猜想得出結(jié)論.

(1)通過計算(可用計算器)比較下列①~⑦組兩數(shù)的大。(在橫線上填上“>”“=”或“<”)

①12____21;②23_____32;③34_____43;④45_____54;

⑤56____65;⑥67_____76;⑦78_____87;

(2)歸納第(1)問的結(jié)果,可以猜想出nn+1和(n+1)n的大小關(guān)系;

(3)根據(jù)以上結(jié)論,可以得出20162017和20172016的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.

(1)已知:如圖1,四邊形是“等對角四邊形”, , .求, 的度數(shù).

(2)在探究“等對角四邊形”性質(zhì)時:

① 小紅畫了一個“等對角四邊形”(如圖2),其中, ,此時她發(fā)現(xiàn)成立.請你證明此結(jié)論.

② 由此小紅猜想:“對于任意‘等對角四邊形’,當一組鄰邊相等時,另一組鄰邊也相等”.你認為她的猜想正確嗎?若正確,請證明;若不正確,請舉出反例.

(3)已知:在“等對角四邊形”中, , AB=AD=4,.求∠D和對角線的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形紙片ABCD中,已知AD=8,AB=6E是邊BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當△EFC為直角三角形時,BE的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,EF分別是AD、BC的中點,G、H分別是BD、AC的中點,當ABCD滿足什么條件時,四邊形EGFH是菱形?請證明你的結(jié)論.(提示:過點BBMADEG的延長線于點M,證明EG//ABEG=AB)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC中,AB=ACBAC=90°,直角∠EPF的頂點PBC中點,兩邊PEPF分別交AB、AC于點E、F,給出的以下四個結(jié)論:①AE=CF; ②△EPF一定是等腰直角三角形; S四邊形AEPF=SABC;④當∠EPFABC內(nèi)繞頂點P旋轉(zhuǎn)時始終有EF=AP。(點E不與A、B重合),上述結(jié)論中始終正確的有_____.(寫序號)

查看答案和解析>>

同步練習冊答案