【題目】如圖,已知直線x軸、y軸分別相交于A,B兩點,與反比例函數(shù)在第二象限內(nèi)交于點C,且點B的中點.

1)求點C的坐標及k的值;

2)求的值.

【答案】1)(-1,2),-2;(2

【解析】

1)分別使,可以求出AB兩點的坐標分別為:(1,0),(0,1),根據(jù)點B的中點,則ACB 點成中心對稱,可得C點的坐標為:(-12),將C 地點坐標代入反比例函數(shù)即可求出的值;

2)作軸于D點,根據(jù)C點的坐標為(-12),得,根據(jù)即可求出結(jié)果.

解:(1直線x軸、y軸分別相交于AB兩點,

時,,

時,,

AB兩點的坐標分別為:(1,0),(0,1),

B的中點,

AB ,C三點共線,且ACB 點成中心對稱,

C點的坐標為:(-1,2),

;

2)如圖示,作軸于D點,

C點的坐標為:(-1,2),

,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,AB=AC,點E、F分別為邊AB、BC上的點,且AE=BF,連接CE、AF交于點H,則下列結(jié)論:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;AEAD=AHAF;其中結(jié)論正確的個數(shù)是

A.1個 B2個 C3個 D4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船位于小島M的北偏東45°方向、距離小島180海里的A處,漁船從A處沿正南方向航行一段距離后,到達位于小島南偏東60°方向的B處.

1)求漁船從AB的航行過程中與小島M之間的最小距離(結(jié)果用根號表示):

2)若漁船以20海里/小時的速度從B沿BM方向行駛,求漁船從B到達小島M的航行時間(結(jié)果精確到0.1小時).(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD⊙O的內(nèi)接四邊形,BC⊙O的直徑,OE⊥BCAB于點E,若BE=2AE,則∠ADC =_________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,連接AC,將繞點A逆時針旋轉(zhuǎn)α,連接CF,OCF的中點,連接OE,OD

1)如圖1,當時,請直接寫出OEOD的關(guān)系(不用證明).

2)如圖2,當時,(1)中的結(jié)論是否成立?請說明理由.

3)當時,若,請直接寫出點O經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個無理數(shù)生成器的工作流程圖,根據(jù)該流程圖,下面說法:

當輸出值y時,輸入值x39;

當輸入值x16時,輸出值y;

對于任意的正無理數(shù)y,都存在正整數(shù)x,使得輸入x后能夠輸出y;

存在這樣的正整數(shù)x,輸入x之后,該生成器能夠一直運行,但始終不能輸出y值.其中錯誤的是( 。

A.①②B.②④C.①④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥研究所研發(fā)了一種新藥,試驗藥效時發(fā)現(xiàn):1.5小時內(nèi),血液中含藥量y(微克)與時間x(小時)的關(guān)系可近似地用二次函數(shù)yax2+bx表示;1.5小時后(包括1.5小時),yx可近似地用反比例函數(shù)yk0)表示,部分實驗數(shù)據(jù)如表:

時間x(小時)

0.2

1

1.8

含藥量y(微克)

7.2

20

12.5

1)求a、bk的值;

2)服藥后幾小時血液中的含藥量達到最大值?最大值為多少?

3)如果每毫升血液中含藥量不少于10微克時治療疾病有效,那么成人按規(guī)定劑量服用該藥一次后能維持多長的有效時間.(1.41,精確到0.1小時)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,拋物線y=x2+k﹣1x﹣k與直線y=kx+1交于A,B兩點,點A在點B的左側(cè).

1)如圖1,當k=1時,直接寫出A,B兩點的坐標;

2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;

3)如圖2,拋物線y=x2+k﹣1x﹣kk0)與x軸交于點C、D兩點(點C在點D的左側(cè)),在直線y=kx+1上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB3,BC4,點EA邊上一點,且AE,點F是邊BC上的任意一點,把BEF沿EF翻折,點B的對應(yīng)點為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____

查看答案和解析>>

同步練習(xí)冊答案