【題目】如圖,菱形ABCD中,AB=AC,點E、F分別為邊AB、BC上的點,且AE=BF,連接CE、AF交于點H,則下列結(jié)論:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AEAD=AHAF;其中結(jié)論正確的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
【答案】D.
【解析】
試題分析:∵四邊形ABCD是菱形,
∴AB=BC,
∵AB=AC,
∴AB=BC=AC,
即△ABC是等邊三角形,
同理:△ADC是等邊三角形
∴∠B=∠EAC=60°,
在△ABF和△CAE中,
,
∴△ABF≌△CAE(SAS);
故①正確;
∴∠BAF=∠ACE,
∵∠AEH=∠B+∠BCE,
∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°
故②正確;
∵∠BAF=∠ACE,∠AEC=∠AEC,
∴△AEH∽△CEA,
故③正確;
在菱形ABCD中,AD=AB,
∵△AEH∽△CEA,∴△ABF≌△CAE,
∴△AEH∽△ABF,
∴,
∴,
∴AEAD=AHAF,
故④正確,
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的兩條對角線相交于點O,點E是AB邊的中點,圖中已有三角形與△ADE面積相等的三角形(不包括△ADE)共有( )個.
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[閱讀]
在平面直角坐標系中,以任意兩點P( x1,y1)、Q(x2,y2)為端點的線段中點坐標為(,).
[運用]
(1)如圖,矩形ONEF的對角線相交于點M,ON、OF分別在x軸和y軸上,O為坐標原點,點E的坐標為(4,3),則點M的坐標為 .
(2)在直角坐標系中,有A(﹣1,2),B(3,1),C(1,4)三點,另有一點D與點A、B、C構(gòu)成平行四邊形的頂點,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標系如圖,直線的經(jīng)過點和點.
求m、n的值;
如果拋物線經(jīng)過點A、B,該拋物線的頂點為點P,求的值;
設(shè)點Q在直線上,且在第一象限內(nèi),直線與y軸的交點為點D,如果,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,在平行四邊形中,對角線、交于點.過點的直線分別交邊、于點、.易證:(不需要證明).
探究:若圖①中的直線分別交邊、的延長線于點、,其它條件不變,如圖②.
求證:.
應(yīng)用:在圖②中,連結(jié).若,,,,則的長是__________,四邊形的面積是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面上有線段AB和點C,按下列語句要求畫圖與填空:
(1)作射線AC;
(2)用尺規(guī)在線段AB的延長線上截取BD=AC;
(3)連接BC
(4)有一只螞蟻想從點A爬到點B,它應(yīng)該沿路徑(填序號)______(①AB,②)爬行最近,這樣爬行所運用到的數(shù)學(xué)原理是_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,線段MN是周長為36cm的圓的直徑(圓心為O),動點A從點M出發(fā),以的速度沿順時針方向在圓周上運動,經(jīng)過點N時,其速度變?yōu)?/span>,并以這個速度繼續(xù)沿順時針方向運動之點M后停止。在動點A運動的同時,動點B從點N出發(fā),以的速度沿逆時針方向在圓周上運動,繞一周后停止運動。設(shè)點A、點B運動時間為.
(1)連接OA、OB,當(dāng)t=4時, = °,在整個運動過程中,當(dāng)時,點A運動的路程為 cm(第2空結(jié)果用含t的式子表示);
(2)當(dāng)A、B兩點相遇時,求運動時間t;
(3)連接OA、OB,當(dāng)時,請直接寫出所有符合條件的運動時間t.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函數(shù)y=在第一象限內(nèi)的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=4.
(1)求反比例函數(shù)解析式;
(2)求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com