【題目】如圖,矩形ABCD中,AB3BC4,點(diǎn)EA邊上一點(diǎn),且AE,點(diǎn)F是邊BC上的任意一點(diǎn),把BEF沿EF翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)為G,連接AGCG,則四邊形AGCD的面積的最小值為_____

【答案】

【解析】

根據(jù)矩形ABCD中,AB3,BC4,可得AC5,由AE可得點(diǎn)F是邊BC上的任意位置時(shí),點(diǎn)C始終在AC的下方,設(shè)點(diǎn)GAC的距離為h,要使四邊形AGCD的面積的最小,即h最。渣c(diǎn)G在以點(diǎn)E為圓心,BE為半徑的圓上,且在矩形ABCD的內(nèi)部.過(guò)點(diǎn)EEHAC,交圓E于點(diǎn)G,此時(shí)h最。鶕(jù)銳角三角函數(shù)先求得h的值,再分別求得三角形ACD和三角形ACG的面積即可得結(jié)論.

解:如圖,連接AC,

在矩形ABCD中,AB3,BC4,

B=∠D90°

AC5,

AB3,AE,

∴點(diǎn)F是邊BC上的任意位置時(shí),點(diǎn)G始終在AC的下方,

設(shè)點(diǎn)GAC的距離為h

S四邊形AGCDSACD+SACG

3×4+×5h,

6+h

要使四邊形AGCD的面積的最小,即h最。

∵點(diǎn)G在以點(diǎn)E為圓心,BE為半徑的圓上,且在矩形ABCD的內(nèi)部.

過(guò)點(diǎn)EEHAC,交圓E于點(diǎn)G,此時(shí)h最小.

RtABC中,sinBAC,

RtAEH中,AE,

sinBAC,

解得EHAE

EGBEABAE3,

hEHEG﹣(3)=3

S四邊形AGCD6+×3

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y2x+b經(jīng)過(guò)點(diǎn)A(﹣10),與y軸正半軸交于B點(diǎn),與反比例函數(shù)x0)交于點(diǎn)C,且BC2ABBDx軸交反比例函數(shù)x0)于點(diǎn)D,連接AD

1)求b,k的值;

2)求△ABD的面積;

3)若E為線段BC上一點(diǎn),過(guò)點(diǎn)EEFBD,交反比例函數(shù)x0)于點(diǎn)F,且EFBD,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:⊙O的兩條弦,相交于點(diǎn),且

1)如圖1,連接,求證:

2)如圖2,在,在上取一點(diǎn),使得,于點(diǎn),連接

判斷是否相等,并說(shuō)明理由.

,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車(chē)分別從AB兩地同時(shí)出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車(chē)相遇時(shí)停止.甲車(chē)行駛一段時(shí)間后,因故停車(chē)0.5小時(shí),故障解除后,繼續(xù)以原速向B地行駛,兩車(chē)之間的路程y(千米)與出發(fā)后所用時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示.

1)求甲、乙兩車(chē)行駛的速度V、V.

2)求m的值.

3)若甲車(chē)沒(méi)有故障停車(chē),求可以提前多長(zhǎng)時(shí)間兩車(chē)相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+3 的圖象與x軸分別交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C

(1)求此二次函數(shù)解析式;

(2)點(diǎn)D為拋物線的頂點(diǎn),試判斷△BCD的形狀,并說(shuō)明理由;

(3)將直線BC向上平移t(t>0)個(gè)單位,平移后的直線與拋物線交于M,N兩點(diǎn)(點(diǎn)M在y軸的右側(cè)),當(dāng)△AMN為直角三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線ABx軸,y軸,交于AB兩點(diǎn),點(diǎn)CBO的中點(diǎn)且

(1)求直線AC的解析式;

(2)若點(diǎn)M是直線AC的一點(diǎn),當(dāng)時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和爸爸從家步行去公園,爸爸先出發(fā)一直勻速前行,小明后出發(fā).家到公園的距離為2500 m,如圖是小明和爸爸所走的路程s(m)與步行時(shí)間t(min)的函數(shù)圖象.

(1)直接寫(xiě)出小明所走路程s與時(shí)間t的函數(shù)關(guān)系式;

(2)小明出發(fā)多少時(shí)間與爸爸第三次相遇?

(3)在速度都不變的情況下,小明希望比爸爸早20 min到達(dá)公園,則小明在步行過(guò)程中停留的時(shí)間需作怎樣的調(diào)整?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲,乙,丙三名校排球隊(duì)員每人10次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為每次連續(xù)接球10個(gè),每墊球到位1個(gè)記1分.

運(yùn)動(dòng)員丙測(cè)試成績(jī)統(tǒng)計(jì)表

測(cè)試序號(hào)

1

2

3

4

5

6

7

8

9

10

成績(jī)(分)

7

6

8

7

5

8

8

7

1)若運(yùn)動(dòng)員丙測(cè)試成績(jī)的平均數(shù)和眾數(shù)都是7,則成績(jī)統(tǒng)計(jì)表中 ,

2)若在三名隊(duì)員中選擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的同學(xué)作為排球比賽的自由人,你認(rèn)為選誰(shuí)更合適?請(qǐng)用你所學(xué)過(guò)的統(tǒng)計(jì)量加以分析說(shuō)明(參考數(shù)據(jù):三人成績(jī)的方差分別為,

3)訓(xùn)練期間甲、乙、丙三人之間進(jìn)行隨機(jī)傳球游戲,先由甲傳出球,經(jīng)過(guò)三次傳球,球回到甲手中的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)四邊形有且只有三個(gè)頂點(diǎn)在圓上,那么稱這個(gè)四邊形是該圓的聯(lián)絡(luò)四邊形,已知圓的半徑長(zhǎng)為,這個(gè)圓的一個(gè)聯(lián)絡(luò)四邊形是邊長(zhǎng)為的菱形,那么這個(gè)菱形不在圓上的頂點(diǎn)與圓心的距離是________

查看答案和解析>>

同步練習(xí)冊(cè)答案