【題目】如圖,與軸交于點(diǎn)C,與軸的正半軸交于點(diǎn)K,過點(diǎn)作軸交拋物線于另一點(diǎn)B,點(diǎn)在軸的負(fù)半軸上,連結(jié)交軸于點(diǎn)A,若.
(1)用含的代數(shù)式表示的長;
(2)當(dāng)時(shí),判斷點(diǎn)是否落在拋物線上,并說明理由;
(3)過點(diǎn)作軸交軸于點(diǎn)延長至,使得連結(jié)交軸于點(diǎn)連結(jié)AE交軸于點(diǎn)若的面積與的面積之比為則求出拋物線的解析式.
【答案】(1)BC=m;(2)點(diǎn)D在拋物線上,理由見解析; (3).
【解析】
(1)先求出拋物線的對稱軸,然后根據(jù)點(diǎn)C與點(diǎn)B關(guān)于對稱軸對稱即可求出BC的長;
(2)根據(jù)題意即可求出BC和二次函數(shù)解析式,根據(jù)利用平行證出△AOD∽△ACB,列出比例式即可求出點(diǎn)D的坐標(biāo),最后代入解析式即可判斷結(jié)論;
(3)根據(jù)已知條件可得點(diǎn)E的坐標(biāo)為(m,),即OF=m,EF=,△ODG∽△FDE,然后用m表示出OD、DF、OG、MF和OM,再利用平行證出△AOM∽△EFM,列出比例式即可求出m的值,從而求出結(jié)論.
解:(1)圖象的對稱軸為直線x=,點(diǎn)C與點(diǎn)B關(guān)于對稱軸對稱
∴BC==m;
(2)在,理由如下
當(dāng)m=2時(shí),BC=2,
∵,
∴△AOD∽△ACB
∴
∴OD=BC=1
∴點(diǎn)D的坐標(biāo)為(-1,0)
當(dāng)x=-1時(shí),
∴點(diǎn)D在拋物線.
(3)∵,
∴點(diǎn)E的坐標(biāo)為(m,),即OF=m,EF=,△ODG∽△FDE
由(2)可知
∴OD=BC=m,OA=OC
∴DF=OD+OF=m
∴
即
解得:OG=m
∵的面積與的面積之比為
∴EF·MF=2×OD·OG
即··MF=2×·m·m
解得:MF=m
∴OM=OF-MF=m
將x=0代入中,解得y=3
∴OC=3
∴OA=1
∵OA∥EF
∴△AOM∽△EFM
∴
即
解得:m=1
∴拋物線的解析式為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】受國內(nèi)外復(fù)雜多變的經(jīng)濟(jì)環(huán)境影響,去年1至7月,原材料價(jià)格一路攀升,長沙市某服裝廠每件衣服原材料的成本y1(元)與月份x(1≤x≤7,且x為整數(shù))之間的函數(shù)關(guān)系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
成本(元/件) | 56 | 58 | 60 | 62 | 64 | 66 | 68 |
8至12月,隨著經(jīng)濟(jì)環(huán)境的好轉(zhuǎn),原材料價(jià)格的漲勢趨緩,每件原材料成本y2(元)與月份x的函數(shù)關(guān)系式為y2=x+62(8≤x≤12,且x為整數(shù)).
(1)請觀察表格中的數(shù)據(jù),用學(xué)過的函數(shù)相關(guān)知識(shí)求y1與x的函數(shù)關(guān)系式.
(2)若去年該衣服每件的出廠價(jià)為100元,生產(chǎn)每件衣服的其他成本為8元,該衣服在1至7月的銷售量p1(萬件)與月份x滿足關(guān)系式p1=0.1x+1.1(1≤x≤7,且x為整數(shù)); 8至12月的銷售量p2(萬件)與月份x滿足關(guān)系式p2=﹣0.1x+3(8≤x≤12,且x為整數(shù)),該廠去年哪個(gè)月利潤最大;并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等邊三角形的內(nèi)切圓半徑為外接圓半徑為,平面內(nèi)任意一點(diǎn)到等邊三角形中心的距離為若滿足則稱點(diǎn)叫做等邊三角形的中心關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系中,等邊的三個(gè)頂點(diǎn)的坐標(biāo)分別為.
(1)①等邊中心的坐標(biāo)為 ;
②已知點(diǎn)在中,是等邊的中心關(guān)聯(lián)點(diǎn)的是 ;
(2)如圖1,過點(diǎn)作直線交軸正半軸于使.
①若線段上存在等邊的中心關(guān)聯(lián)點(diǎn)求的取值范圍;
②將直線向下平移得到直線當(dāng)滿足什么條件時(shí),直線上總存在等邊的中心關(guān)聯(lián)點(diǎn);
(3)如圖2,點(diǎn)為直線上一動(dòng)點(diǎn),的半徑為當(dāng)從點(diǎn)出發(fā),以每秒個(gè)單位的速度向右移動(dòng),運(yùn)動(dòng)時(shí)間為秒.是否存在某一時(shí)刻使得上所有點(diǎn)都是等邊的中心關(guān)聯(lián)點(diǎn)?如果存在,請直接寫出所有符合題意的的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動(dòng)課上,老師和學(xué)生一起去測量學(xué)校升旗臺(tái)上旗桿AB的高度,如圖,老師測得升旗臺(tái)前斜坡FC的坡比為iFC=1:10(即EF:CE=1:10),學(xué)生小明站在離升旗臺(tái)水平距離為35m(即CE=35m)處的C點(diǎn),測得旗桿頂端B的仰角為α,已知tanα=,升旗臺(tái)高AF=1m,小明身高CD=1.6m,請幫小明計(jì)算出旗桿AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家庭過期藥品屬于“危險(xiǎn)廢物”,處理不當(dāng)將污染環(huán)境,危害健康某市藥監(jiān)部門為了解家庭處理過期藥品的方式,決定對全市家庭作一次簡單隨機(jī)抽樣調(diào)查.
(1)下列選取樣本的方法最合理的一種是 (只需填上正確答案的序號(hào))
①在市中心某個(gè)居民區(qū)以家庭為單位隨機(jī)抽;
②在全市醫(yī)務(wù)工作者中以家庭為單位隨機(jī)抽取;
③在全市常住人口中以家庭為單位隨機(jī)抽。
(2)本次抽樣調(diào)查發(fā)現(xiàn),接受調(diào)查的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如下圖:
① ,
②補(bǔ)全條形統(tǒng)計(jì)圖;(標(biāo)上數(shù)據(jù))
③家庭過期藥品的正確處理方式是送回收站,若該市有萬戶家庭,請估計(jì)大約有多少戶家庭處理過期藥品的方式是送回收站.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,對角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若AB=2,∠BCD=120°,求四邊形AODE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初中學(xué)生對待學(xué)習(xí)的態(tài)度一直是教育工作者極為關(guān)注的一個(gè)問題.為此某市教育局對本市部分學(xué)校的八年級(jí)學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):喜歡;B級(jí):不太喜歡;C級(jí):不喜歡),并將調(diào)查結(jié)果繪制成不完整的統(tǒng)計(jì)圖(如圖).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了_____名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求出扇形統(tǒng)計(jì)圖中級(jí)所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)該市近名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo).(達(dá)標(biāo)包括級(jí)和級(jí))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是直線上的兩點(diǎn),直線l1、l2的初始位置與直線重合將l1繞點(diǎn)順時(shí)針以每秒10°的速度旋轉(zhuǎn),將l2繞點(diǎn)B逆時(shí)針以每秒5°的速度旋轉(zhuǎn),且兩條直線從重合位置同時(shí)開始旋轉(zhuǎn),設(shè)旋轉(zhuǎn)時(shí)間為秒(是正整數(shù)).當(dāng)時(shí),設(shè)的交點(diǎn)為;當(dāng)時(shí),設(shè)的交點(diǎn)為;當(dāng)時(shí)設(shè)的交點(diǎn)為……那么當(dāng)時(shí), 相交所得的鈍角是__________.當(dāng)落在上方時(shí), 的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,,是等圓,內(nèi)接于,點(diǎn),分別在,上.如圖,
①以為圓心,長為半徑作弧交于點(diǎn),連接;
②以為圓心,長為半徑作弧交于點(diǎn),連接;
下面有四個(gè)結(jié)論:
①
②
③
④
所有正確結(jié)論的序號(hào)是( ).
A.①②③④B.①②③C.②④D.②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com