【題目】等腰三角形一腰長為5,一邊上的高為3,則底邊長為 .
【答案】8或 或3
【解析】解:如圖所示:
當(dāng)?shù)妊切螢殇J角三角形,且CD為腰上的高時(shí),
在Rt△ACD中,AC=5,CD=3,
根據(jù)勾股定理得:AD= =4,
∴BD=AB﹣AD=5﹣4=1,
在Rt△BDC中,CD=3,BD=1,
根據(jù)勾股定理得:BC= = ;
當(dāng)?shù)妊切螢殁g角三角形,且CD為腰上的高時(shí),
在Rt△ACD中,AC=5,CD=3,
根據(jù)勾股定理得:AD= =4,
∴BD=AB+AD=5+4=9,
在Rt△BDC中,CD=3,BD=9,
根據(jù)勾股定理得:BC= =3 ;
當(dāng)AD為底邊上的高時(shí),如圖所示:
∵AB=AC,AD⊥BC,
∴BD=CD,
在Rt△ABD中,AD=3,AB=5,
根據(jù)勾股定理得:BD= =4,
∴BC=2BD=8,
綜上,等腰三角形的底邊長為8或 或3 .
所以答案是:8或 或3
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰三角形的性質(zhì)的相關(guān)知識(shí),掌握等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角),以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有筐白菜,以每筐千克為標(biāo)準(zhǔn),超過或不足的分別用正、負(fù)來表示,記錄如下:
與標(biāo)準(zhǔn)質(zhì)量的差單位:千克 | ||||||
筐 數(shù) |
(1)與標(biāo)準(zhǔn)質(zhì)量比較,筐白菜總計(jì)超過或不足多少千克?
(2)若白菜每千克售價(jià)元,則出售這筐白菜可賣多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)=的圖像與正比例函數(shù)=的圖像相交于點(diǎn)A(2,),與軸相交于點(diǎn)B.
(1)求、的值;
(2)在軸上存在點(diǎn)C,使得△AOC的面積等于△AOB的面積,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知A(﹣2,0),C(0,4),點(diǎn)O′為x軸上一點(diǎn),⊙O′過A,C兩點(diǎn)交x軸于另一點(diǎn)B.
(1)求點(diǎn)O′的坐標(biāo);
(2)已知拋物線y=ax2+bx+c過A,B,C三點(diǎn),且與⊙O′交于另一點(diǎn)E,求拋物線的解析式,并直接寫出點(diǎn)E 坐標(biāo);
(3)設(shè)點(diǎn)P(t,0)是線段OB上一個(gè)動(dòng)點(diǎn),過點(diǎn)P作直線l⊥x軸,交線段BC于F,交拋物線y=ax2+bx+c于點(diǎn)G,請用t表示四邊形BPCG的面積S;
(4)在(3)的條件下,四邊形BPCG能否為平行四邊形?若能,請求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知邊長為4cm的正方形ABCD中,點(diǎn)P,Q同時(shí)從點(diǎn)A出發(fā),以相同的速度分別沿A→B→C和A→D→C的路線運(yùn)動(dòng),則當(dāng)PQcm時(shí),點(diǎn)C到PQ的距離為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,種紙片是邊長為的正方形,種紙片是邊長為的正方形,種紙片是長為,寬為的長方形.并用種紙片一張,種紙片一張,種紙片兩張拼成如圖2的大正方形.
(1)請用兩種不同的方法求圖2大正方形的面積:方法1:_______;方法2:________;
(2)觀察圖2,請你寫出代數(shù)式:之間的等量關(guān)系________;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①已知:,求的值;
②已知,求的值;
③已知(a-2019)2+(a-2021)2=8,則求(a-2020)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB于點(diǎn)D,AC=4,BC=3,DB=,
(1)求CD、AD的長
(2)判斷△ABC的形狀,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點(diǎn)P(﹣3,0),且與兩坐標(biāo)軸截得的三角形面積為4,則此一次函數(shù)的解析式為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com