【題目】將兩個等腰RtADERtABC如圖放置在一起,其中∠DAE=∠ABC90°.點(diǎn)EAB上,ACDE交于點(diǎn)H,連接BHCE,且∠BCE15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tanBCD;④;正確的個數(shù)是( 。

A.1B.2C.3D.4

【答案】D

【解析】

利用等腰直角三角形的性質(zhì)得出∠DAC=∠BAC即可判斷出①正確;再用等腰直角三角形的內(nèi)角的關(guān)系即可得出∠DCE60°,即可得出②正確,判斷出∠BCD75°=∠BEC即可判斷出③正確,設(shè)出AHx,利用等腰直角三角形和等邊三角形的性質(zhì)即可得出CH,EH,ABBE最后用三角形的面積公式即可得出④正確.

解:∵△ABCADE是等腰直角三角形,

∴∠BAC=∠ACB45°,∠DAE90°,

∴∠DAC=∠BAC45°,

ADAE,

AC垂直平分DE,∴①正確,

AC垂直平分DE,

DCEC,∠DAC=∠EAC

∵∠BCE15°,

∴∠ACE30°

∴∠DCE2ACE60°,

∴△CDE是等邊三角形,∴②正確;

∵∠DCE60°,∠BCE15°,

∴∠BCD75°

∵∠BEC90°15°75°,

∴∠BCD=∠BEC

RtBCE中,

tanBCD,故③正確;

設(shè)AHx,

RtAEH中,HEAHx,AEx,

RtCEH中,∠ECH30°,

CHEHx,CE2HE2x

ACAH+CH=(+1x,

RtABC中,

BEABAE,

,

.故④正確,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,∠BAD90°,點(diǎn)EBC的延長線上,且∠DEC=∠BAC

1)求證:DE⊙O的切線;

2)若ACDE,當(dāng)AB12CE3時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形.點(diǎn)從點(diǎn)出發(fā)以的速度向點(diǎn)運(yùn)動,以為一邊在的右下方作正方形.同時垂直于的直線從點(diǎn)出發(fā)以的速度向點(diǎn)運(yùn)動,當(dāng)直線和正方形開始有公共點(diǎn)時,點(diǎn)運(yùn)動的時間為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校為了解本校學(xué)生出行使用共享單車的情況,隨機(jī)調(diào)查了某天部分出行學(xué)生使用共享單車的情況,并整理成如下統(tǒng)計表.

使用次數(shù)

0

1

2

3

4

5

人數(shù)

11

15

23

28

18

5

1)這天部分出行學(xué)生使用共享單車次數(shù)的中位數(shù)是 ,眾數(shù)是

2)這天部分出行學(xué)生平均每人使用共享單車約多少次?(結(jié)果保留整數(shù))

3)若該校某天有1500名學(xué)生出行,請你估計這天使用共享單車次數(shù)在3次以上(含3次)的學(xué)生有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在中,,,點(diǎn)的中點(diǎn).

1)若點(diǎn)、分別是、的中點(diǎn),則線段的數(shù)量關(guān)系是 ;線段的位置關(guān)系是 ;

2)如圖①,若點(diǎn)、分別是、上的點(diǎn),且,上述結(jié)論是否依然成立,若成立,請證明;若不成立,請說明理由;

3)如圖②,若點(diǎn)分別為、延長線上的點(diǎn),且,直接寫出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設(shè)銷售單價增加元,每天售出件.

1)請寫出之間的函數(shù)表達(dá)式;

2)當(dāng)為多少時,超市每天銷售這種玩具可獲利潤2250元?

3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的發(fā)展,智能產(chǎn)品越來越受到人們的喜愛,為了獎勵員工,某公司打算采購一批智能音箱.現(xiàn)有AB兩款智能音箱可供選擇,已知A款音箱的單價比B款音箱的單價高50元,購買5A款音箱和4B款音箱共需1600元.

1)分別求出A款音箱和B款音箱的單價;

2)公司打算采購A,B兩款音箱共20個,且采購A,B兩款音箱的總費(fèi)用不超過3500元,那么A款音箱最多采購多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,在平面直角坐標(biāo)系中,已知拋物線軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的右側(cè)),與軸交于點(diǎn),連接.

1)求點(diǎn)三點(diǎn)的坐標(biāo)和拋物線的對稱軸;

2)點(diǎn)為拋物線對稱軸上一點(diǎn),連接,,若,求點(diǎn)的坐標(biāo);

3)已知點(diǎn),若是拋物線上一個動點(diǎn)(其中),連接,,,求面積的最大值及此時點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司快遞員甲勻速騎車前往某小區(qū)送物件,出發(fā)幾分鐘后,快遞員乙發(fā)現(xiàn)甲的手機(jī)落在公司,無法聯(lián)系,于是乙勻速騎車去追趕甲.乙剛出發(fā)2分鐘時,甲也發(fā)現(xiàn)自己手機(jī)落在公司,立刻按原路原速騎車回公司,2分鐘后甲遇到乙,乙把手機(jī)給甲后立即原路原速返回公司,甲繼續(xù)原路原速趕往某小區(qū)送物件,甲乙兩人相距的路程y(米)與甲出發(fā)的時間x(分鐘)之間的關(guān)系如圖所示(乙給甲手機(jī)的時間忽略不計).則乙回到公司時,甲距公司的路程是______米.

查看答案和解析>>

同步練習(xí)冊答案