【題目】已知,在中,,,點為的中點.
(1)若點、分別是、的中點,則線段與的數(shù)量關(guān)系是 ;線段與的位置關(guān)系是 ;
(2)如圖①,若點、分別是、上的點,且,上述結(jié)論是否依然成立,若成立,請證明;若不成立,請說明理由;
(3)如圖②,若點、分別為、延長線上的點,且,直接寫出的面積.
【答案】(1),;(2)成立,證明見解析;(3)17.
【解析】
(1)點、分別是、的中點,及,可得:,根據(jù)SAS判定,即可得出,,可得,即可證;
(2)根據(jù)SAS判定,即可得出,,可得,即可證;
(3)根據(jù)SAS判定,即可得出,將轉(zhuǎn)化為:進行求解即可.
解:(1)證明:連接,
∵點、分別是、的中點,
∴
∵,
∴
∵,,為中點,
∴,且平分,.
∴
在和中,
,
∴,
∴,
∵,
∴,
即,即
故答案為:,;
(2)結(jié)論成立:,;
證明:連接,
∵,,為中點,
∴,且平分,.
∴
在和中,
,
∴,
∴,
∵,
∴,
即,即
(3)證明:連接,
∵
∴
∴
∵,,為中點,
∴,且平分,,
∴
∴
∴
在和中,
,
∴,
∴
即
∵為中點,
∴
∵,
∴,
∴
故答案為:17
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為8的正方形紙片ABCD沿著EF折疊,使點C落在AB邊的中點M處.點D落在點D'處,MD'與AD交于點G,則△AMG的內(nèi)切圓半徑的長為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年我縣為了創(chuàng)建省級文明縣城,全面推行中小學校“社會主義核心價值觀”進課堂.某校對全校學生進行了檢測評價,檢測結(jié)果分為(優(yōu)秀)、(良好)、(合格)、(不合格)四個等級.并隨機抽取若干名學生的檢測結(jié)果作為樣本進行數(shù)據(jù)處理,制作了如下所示不完整的統(tǒng)計表和統(tǒng)計圖.
請根據(jù)統(tǒng)計表和統(tǒng)計圖提供的信息,解答下列問題:
(1)本次隨機抽取的樣本容量為__________;
(2)統(tǒng)計表中_________,_________.
(3)若該校共有學生5000人,請你估算該校學生在本次檢測中達到“(優(yōu)秀)”等級的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,以AC為直徑的⊙O交AD于點E,交BC于點F,AB2=BFBC.
(1)求證:AB與⊙O相切;
(2)若.
①求證:AC2=ABCD;
②若AC=3,EF=2,則AB+CD= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與軸交于點、,頂點為M.
(1)求拋物線的解析式和點M的坐標;
(2)點E是拋物線段BC上的一個動點,設的面積為S,求出S的最大值,并求出此時點E的坐標;
(3)在拋物線的對稱軸上是否存在點P,使得以A、P、C為頂點的三角形是直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩個等腰Rt△ADE、Rt△ABC如圖放置在一起,其中∠DAE=∠ABC=90°.點E在AB上,AC與DE交于點H,連接BH、CE,且∠BCE=15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tan∠BCD=;④;正確的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解七年級學生的體重情況,隨機抽取了七年級m名學生進行調(diào)查,將抽取學生的體重情況繪制如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
組別 | 體重(千克) | 人數(shù) |
A | 37.5≤x<42.5 | 10 |
B | 42.5≤x<47.5 | n |
C | 47.5≤x<52.5 | 40 |
D | 52.5≤x<57.5 | 20 |
E | 57.5≤x<62.5 | 10 |
請根據(jù)圖表信息回答下列問題:
(1)填空:①m=_____,②n=_____,③在扇形統(tǒng)計圖中,C組所在扇形的圓心角的度數(shù)等于_______度;
(2)若把每組中各個體重值用這組數(shù)據(jù)的中間值代替(例如:A組數(shù)據(jù)中間值為40千克),則被調(diào)查學生的平均體重是多少千克?
(3)如果該校七年級有1000名學生,請估算七年級體重低于47.5千克的學生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面內(nèi)容,并解答問題:
楊輝和他的一個數(shù)學問題
我國古代對代數(shù)的研究,特別是對方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.
楊輝,字謙光,錢塘(今浙江杭州)人,南宋杰出的數(shù)學家和數(shù)學教育家,楊輝一生留下了大量的著述,他著名的數(shù)學書共五種二十一卷,它們是:《詳解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通變本末》3卷(1274年,第3卷與他人合編),《田(楊輝,南宋數(shù)學家)畝比類乘除捷法》2卷(1275年),《續(xù)古摘奇算法》2卷(1275年,與他人合編),其中后三種為楊輝后期所著,一般稱之為《楊輝算法》.下面是楊輝在1275年提出的一個問題(選自楊輝所著《田畝比類乘除捷法》):
直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長一十二步(寬比長少一十二步),問闊及長各幾步.
請你用學過的知識解決這個問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“雙十一”購物街中,某兒童品牌玩具專賣店購進了兩種玩具,其中類玩具的金價比玩具的進價每個多元.經(jīng)調(diào)查發(fā)現(xiàn):用元購進類玩具的數(shù)量與用元購進類玩具的數(shù)量相同.
(1)求的進價分別是每個多少元?
(2)該玩具店共購進了兩類玩具共個,若玩具店將每個類玩具定價為元出售,每個類玩具定價元出售,且全部售出后所獲得的利潤不少于元,則該淘寶專賣店至少購進類玩具多少個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com