【題目】如圖,在矩形ABCD中,AB=3,AD=4,連接AC,O是AC的中點,M是AD上一點,且MD=1,P是BC上一動點,則PM﹣PO的最大值為_____.
【答案】
【解析】
連接MO并延長交BC于P,則此時,PM﹣PO的值最大,且PM﹣PO的最大值=OM,根據(jù)全等三角形的性質(zhì)得到AM=CP=3,OM=OP,求得PB=1,過M作MN⊥BC于N,得到四邊形MNCD是矩形,得到MN=CD,CN=DM,根據(jù)勾股定理即可得到結(jié)論.
解:∵在矩形ABCD中,AD=4,MD=1,
∴AM=3,
連接MO并延長交BC于P,
則此時,PM﹣PO的值最大,且PM﹣PO的最大值=OM,
∵AM∥CP,
∴∠MAO=∠PCO,
∵∠AOM=∠COP,AO=CO,
∴△AOM≌△COP(ASA),
∴AM=CP=3,OM=OP,
∴PB=1,
過M作MN⊥BC于N,
∴四邊形MNCD是矩形,
∴MN=CD,CN=DM,
∴PN=4﹣1﹣1=2,
∴MP=,
∴OM=,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 為倡導(dǎo)“低碳生活”,常選擇以自行車作為代步工具,如圖1所示是一輛自行車的實物圖.車架檔AC與CD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2.
(1)求車架檔AD的長;
(2)求車座點E到車架檔AB的距離.
(結(jié)果精確到1 cm.參考數(shù)據(jù): sin75°="0.966," cos75°=0.259,tan75°=3.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代城市綠化帶在不斷擴大,綠化用水的節(jié)約是一個非常重要的問題.
如圖1、圖2所示,某噴灌設(shè)備由一根高度為0.64 m的水管和一個旋轉(zhuǎn)噴頭組成,水管豎直安裝在綠化帶地面上,旋轉(zhuǎn)噴頭安裝在水管頂部(水管頂部和旋轉(zhuǎn)噴頭口之間的長度、水管在噴灌區(qū)域上的占地面積均忽略不計),旋轉(zhuǎn)噴頭可以向周圍噴出多種拋物線形水柱,從而在綠化帶上噴灌出一塊圓形區(qū)域.現(xiàn)測得噴的最遠的水柱在距離水管的水平距離3 m處達到最高,高度為1 m.
(1)求噴灌出的圓形區(qū)域的半徑;
(2)在邊長為16 m的正方形綠化帶上固定安裝三個該設(shè)備,噴灌區(qū)域可以完全覆蓋該綠化帶嗎?如果可以,請說明理由;如果不可以,假設(shè)水管可以上下調(diào)整高度,求水管高度為多少時,噴灌區(qū)域恰好可以完全覆蓋該綠化帶.(以上需要畫出示意圖,并有必要的計算、推理過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=10,tanA=2,BE⊥AC于點E,D是線段BE上的一個動點,則的最小值是( )
A. B. C. D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過點和 ,與軸交于另一點,頂點為.
(1)求拋物線的解析式,并寫出點的坐標;
(2)如圖,點分別在線段上(點不與重合),且,則能否為等腰三角形?若能,求出的長;若不能,請說明理由;
(3)若點在拋物線上,且,試確定滿足條件的點的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”小長假期間,某超市為了吸引顧客,設(shè)計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”、“30元”的字樣.規(guī)定:顧客在本超市一次性購物滿500元以上均可獲得兩次摸球的機會(摸出小球后放回).超市根據(jù)兩小球所標金額的和返還相應(yīng)的代金券.
(1)顧客甲購物1000元,則他最少可獲 元代金券,最多可獲 元代金券.
(2)請用樹形圖或列表方法,求出顧客甲獲得不低于30元(含30元)代金券的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學(xué)生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學(xué)生的成績進行整理,得到下列不完整的統(tǒng)計圖表。
組別 | 分數(shù)段 | 頻次 | 頻率 |
A | 60x<70 | 17 | 0.17 |
B | 70x<80 | 30 | a |
C | 80x<90 | b | 0.45 |
D | 90x<100 | 8 | 0.08 |
請根據(jù)所給信息,解答以下問題:
(1)表中a=___,b=___;
(2)請計算扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角的度數(shù);
(3)已知有四名同學(xué)均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點G,連接CF.
(1)求證:△DAE≌△DCF;
(2)求證:△ABG∽△CFG;
(3)若正方形ABCD的的邊長為2,G為BC的中點,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AD=1,AB=.將矩形ABCD繞著點B順時針旋轉(zhuǎn)90°得到矩形.聯(lián)結(jié),分別交邊CD,于E、F.如果AE=,那么= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com