【題目】如圖,正方形ABCD的頂點(diǎn)A在等腰直角三角形DEF的斜邊EF上,EFBC相交于點(diǎn)G,連接CF

1)求證:DAE≌△DCF;

2)求證:ABG∽△CFG

3)若正方形ABCD的的邊長(zhǎng)為2,GBC的中點(diǎn),求EF的長(zhǎng).

【答案】1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3 EF

【解析】

1)根據(jù)正方形的性質(zhì)有AD=CD,根據(jù)等腰直角三角形的性質(zhì)有DE=DF,已知兩邊嘗試找其夾角對(duì)應(yīng)相等,根據(jù)等角的余角相等可得,∠ADE=∠CDF,據(jù)此可證;

2)此題有多種方法可解,可以延長(zhǎng)BA交DE與M,結(jié)合第(1)問(wèn)全等三角形的結(jié)論用等角做差求得∠BAG=∠FCG,再加上一對(duì)對(duì)頂角相等即可證明;

(3)根據(jù)第(2)問(wèn)相似三角形的結(jié)論,易得,在Rt△CFG中得到了兩直角邊CF與FG的倍數(shù)關(guān)系,再運(yùn)用勾股定理即可解出CF與FG的長(zhǎng)度,又AE=CF,即可解答.

證明:(1)∵正方形ABCD,等腰直角三角形EDF,

∴∠ADC=∠EDF=90°,AD=CD,DE=DF,

∴∠ADE+∠ADF=∠ADF+∠CDF,

∴∠ADE=∠CDF,

在△ADE和△CDF中,

,∠=∠,;

∴△ADE≌△CDF(SAS);

(2)延長(zhǎng)BA到M,交ED于點(diǎn)M,

∵△ADE≌△CDF,

∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,

∵∠MAD=∠BCD=90°,

∴∠EAM=∠BCF,

∵∠EAM=∠BAG,

∴∠BAG=∠BCF,

∵∠AGB=∠CGF,

∴△ABG∽△CFG.

3)∵正方形ABCD的的邊長(zhǎng)為2,GBC的中點(diǎn),

BGCG1,

AG

∵△ABG∽△CFG,

,

CF2FG

CF2+FG2CG2,

2FG2+FG212

∴GF=,CF=,

∵△DAE≌△DCF,

AECF,

∴EF=EA+AG+GF=CF+AG+GF=++

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一帶一路為我們打開了交流、合作的大門,也為沿線各國(guó)在商貿(mào)等領(lǐng)域提供了更多的便捷,2018115日至10日,首屆中國(guó)國(guó)際進(jìn)口博覽會(huì)在國(guó)家會(huì)展中心(上海)舉辦,據(jù)哈外貿(mào)商會(huì)發(fā)布消息,博覽會(huì)期間,哈Paseka公司與重慶某國(guó)際貿(mào)易公司簽訂了供應(yīng)蜂蜜合同:哈Paseka公司于20196月前分期分批向重慶某國(guó)際貿(mào)易公司供給優(yōu)質(zhì)蜂蜜共3000萬(wàn)件,該公司順應(yīng)新時(shí)代購(gòu)物流,打算分線上和線下兩種方式銷售.

1)若計(jì)劃線上銷售量不低于線下銷售量的25%,求該公司計(jì)劃在線下銷售量最多為多少萬(wàn)件?

2)該公司在12月上旬銷售優(yōu)質(zhì)蜂蜜共240萬(wàn)件,且線上線下銷售單件均為100/件.12月中旬決定線上銷售單價(jià)下調(diào)m%,線下銷售單價(jià)不變,在這種情況下,12月中旬銷售總量比上旬增加了m%,且中旬線上銷售量占中旬總銷量的,結(jié)果中旬銷售總金額比上旬銷售總金額提高了m%.求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB3,AD4,連接AC,OAC的中點(diǎn),MAD上一點(diǎn),且MD1,PBC上一動(dòng)點(diǎn),則PMPO的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.

(1)求拋物線的解析式;

(2)拋物線的對(duì)稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);

(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和AEM相似?若存在,求出此時(shí)m的值,并直接判斷PCM的形狀;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店以每件60元的價(jià)格購(gòu)進(jìn)一批貨物,零售價(jià)為每件80元時(shí),可以賣出100件(按相關(guān)規(guī)定零售價(jià)不能超過(guò)80元).如果零售價(jià)在80元的基礎(chǔ)上每降價(jià)1元,可以多賣出10件,當(dāng)零售價(jià)在80元的基礎(chǔ)上降價(jià)x元時(shí),能獲得2160元的利潤(rùn),根據(jù)題意,可列方程為( 。

A.x100+10x)=2160B.20x)(100+10x)=2160

C.20+x)(100+10x)=2160D.20x)(10010x)=2160

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一農(nóng)戶要建一個(gè)矩形豬舍,豬舍的一邊利用長(zhǎng)為15m的住房墻,另外三邊用27m長(zhǎng)的建筑材料圍成,為方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門,所圍矩形豬舍的長(zhǎng),寬分別為多少米時(shí),豬舍面積為96m2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)是邊上的動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),點(diǎn)在邊的延長(zhǎng)線上,,,與邊交于點(diǎn).

1)求的值;

2)當(dāng)時(shí),求的長(zhǎng);

3)點(diǎn)在邊上運(yùn)動(dòng)的過(guò)程中,的值是否會(huì)發(fā)生變化?如果不變化,請(qǐng)求的值;如果變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ABC90°,∠BAC30°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到△AED,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別是EDFAC的中點(diǎn),連接BFDF、BE,DFEA相交于點(diǎn)GBEAC相交于點(diǎn)H

1)如圖1,求證:四邊形BFDE為平行四邊形;

2)如圖2,連接CE,在不添加任何輔助線與字母的情況下,請(qǐng)直接寫出所有與△AEC全等的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E是矩形ABCDAB上一動(dòng)點(diǎn)(不與點(diǎn)B重合),過(guò)點(diǎn)EEFDEBC于點(diǎn)F,連接DF,已知AB4cm,AD2cm,設(shè)A,E兩點(diǎn)間的距離為xcm,DEF面積為ycm2

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)確定自變量x的取值范圍是   ;

2)通過(guò)取點(diǎn)、畫圖、測(cè)量、分析,得到了xy的幾組值,如表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

y/cm2

4.0

3.7

3.9

3.8

3.3

2.0

(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))

3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

4)結(jié)合畫出的函數(shù)圖象,解決問(wèn)題:當(dāng)DEF面積最大時(shí),AE的長(zhǎng)度為   cm

查看答案和解析>>

同步練習(xí)冊(cè)答案