【題目】如圖,矩形ABCD中,對角線AC,BD相交于點O,∠ADB=30°,E為BC邊上一點,∠AEB=45°,CF⊥BD于F.下列結(jié)論:①BE=CD,②BF=3DF,③AE=AO,④CE=CF.正確的結(jié)論有( )
A. ①②B. ②③C. ①②④D. ①②③
【答案】D
【解析】
根據(jù)矩形的性質(zhì),由∠ADB=30°可得,△AOB和△COD都是等邊三角形,再由∠AEB=45°,可得△ABE是等腰直角三角形,其邊有特殊的關(guān)系,利用等量代換可以得出③AE=AO是正確的,①BE=CD是正確的,在正△COD中,CF⊥BD,可得DF=CD,再利用等量代換可得②BF=3DF是正確的,利用選項的排除法確定選項D是正確的.
解:∵四邊形ABCD是矩形,
∴AB=CD,AD=BC,AC=BD,AO=CO=BO=DO,∠ABC=∠ADC=∠BAD=∠BCD=90°,
∵∠AEB=45°,
∴∠BAE=∠AEB=45°
∴AB=BE=CD,AE=AB=CD,
故①正確,
∵∠ADB=30°,
∴∠ABO=60°且AO=BO,
∴△ABO是等邊三角形,
∴AB=AO,
∴AE=AO,
故③正確,
∵△OCD是等邊三角形,CF⊥BD,
∴DF=FO=OD=CD=BD,
∴BF=3DF,
故②正確,
根據(jù)排除法,可得選項D正確,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
閱讀理解:數(shù)軸是學習有理數(shù)的一種重要工具,任何有理數(shù)都可以用數(shù)軸上的點表示,這樣能夠運用數(shù)形結(jié)合的方法解決一些問題.例如,兩個有理數(shù)在數(shù)軸上對應的點之間的距離可以用較大數(shù)與較小數(shù)的差來表示.例如:
在數(shù)軸上,有理數(shù)3與1對應的兩點之間的距離為;
在數(shù)軸上,有理數(shù)3與-2對應的兩點之間的距離為;
在數(shù)軸上,有理數(shù)-3與-2對應的兩點之間的距離為.
解決問題:如圖所示,已知點表示的數(shù)為-3,點表示的數(shù)為-1,點表示的數(shù)為2.
(1)點和點之間的距離為______.
(2)若數(shù)軸上動點表示的數(shù)為,當時,點和點之間的距離可表示為______;當時,點和點之間的距離可表示為______.
(3)若數(shù)軸上動點表示的數(shù)為,點在點和點之間,點和點之間的距離表示為,點和點之間的距離表示為,求(用含的代數(shù)式表示并進行化簡)
(4)若數(shù)軸上動點表示的數(shù)為-2,將點向右移動19個單位長度,再向左移動23個單位長度終點為,那么,兩點之間的距離是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知邊長為4的正方形ABCD,頂點A與坐標原點重合,一反比例函數(shù)圖象過頂點C,動點P以每秒1個單位速度從點A出發(fā)沿AB方向運動,動點Q同時以每秒4個單位速度從D點出發(fā)沿正方形的邊DC﹣CB﹣BA方向順時針折線運動,當點P與點Q相遇時停止運動,設點P的運動時間為t.
(1)求出該反比例函數(shù)解析式;
(2)連接PD,當以點Q和正方形的某兩個頂點組成的三角形和△PAD全等時,求點Q的坐標;
(3)用含t的代數(shù)式表示以點Q、P、D為頂點的三角形的面積s,并指出相應t的取值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)()的圖象與軸交于兩點(點在點的左側(cè)),與軸交于點,且,,頂點為.
(1)求二次函數(shù)的解析式;
(2)點為線段上的一個動點,過點作軸的垂線,垂足為,若,四邊形的面積為,求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(3)探索:線段上是否存在點,使為直角三角形?如果存在,求出點的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖平面直角坐標系中,O(0,0),A(4,4 ),B(8,0).將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE=,則CE:DE的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】海上有一小島,為了測量小島兩端A、B的距離,測量人員設計了一種測量方法,如圖所示,已知B點是CD的中點,E是BA延長線上的一點,測得AE=10海里,DE=30海里,且DE⊥EC,cos∠D=.
(1)求小島兩端A、B的距離;
(2)過點C作CF⊥AB交AB的延長線于點F,求sin∠BCF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果有一列數(shù),從這列數(shù)的第2個數(shù)開始,每一個數(shù)與它的前一個數(shù)的比等于同一個非零的常數(shù),這樣的一列數(shù)就叫做等比數(shù)列(Geometric Sequences).這個常數(shù)叫做等比數(shù)列的公比,通常用字母q表示(q≠0).
(1)觀察一個等比列數(shù)1,,…,它的公比q= ;如果an(n為正整數(shù))表示這個等比數(shù)列的第n項,那么a18= ,an= ;
(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步驟進行:
令S=1+2+4+8+16+…+230…①
等式兩邊同時乘以2,得2S=2+4+8+16++32+…+231…②
由② ﹣ ①式,得2S﹣S=231﹣1
即(2﹣1)S=231﹣1
所以
請根據(jù)以上的解答過程,求3+32+33+…+323的值;
(3)用由特殊到一般的方法探索:若數(shù)列a1,a2,a3,…,an,從第二項開始每一項與前一項之比的常數(shù)為q,請用含a1,q,n的代數(shù)式表示an;如果這個常數(shù)q≠1,請用含a1,q,n的代數(shù)式表示a1+a2+a3+…+an.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在航線l的兩側(cè)分別有觀測點A和B,點B到航線l的距離BD為4km,點A位于點B北偏西60°方向且與B相距20km處.現(xiàn)有一艘輪船從位于點A南偏東74°方向的C處,沿該航線自東向西航行至觀測點A的正南方向E處.求這艘輪船的航行路程CE的長度.(結(jié)果精確到0.1km)(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com