【題目】如圖,已知拋物線y=-x2+bx+c與x軸交于點A(-1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
(1)求此拋物線的解析式.
(2)若點P在第一象限內(nèi)的拋物線上,且S△PAB=S△OEB,求點P的橫坐標(biāo).
(3)將△OBE以點B為中心順時針旋轉(zhuǎn),旋轉(zhuǎn)角等于2∠OBC,設(shè)點E的對應(yīng)點為點E',點O的對應(yīng)點為點O',求直線O'E'與拋物線的交點坐標(biāo).
【答案】(1);(2);(3),.
【解析】
(1)將A、B的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)b、c的值,進(jìn)而可得到拋物線的解析式;
(2)設(shè)P點坐標(biāo)表示出S△PAB,利用B、C點坐標(biāo)求出BC對應(yīng)的表達(dá)式,從而求出E點坐標(biāo),表示出S△OEB,最后利用S△PAB=S△OEB建立方程求解即可;
(3)先根據(jù)∠OBC=45°算出旋轉(zhuǎn)角,畫出圖形后,利用旋轉(zhuǎn)性質(zhì)可得到O'坐標(biāo),利用△EMB≌△E'NB,可得到E'坐標(biāo),從而求出直線表達(dá)式,最后聯(lián)立二次函數(shù)表達(dá)式求交點即可.
解:(1)由點A(-1,0)和點B(3,0)得,解得:,
∴拋物線的解析式為;
(2)令x=0,則y=3,∴C(0,3),
∵,
∴D(1,4);
設(shè)線段BC所在直線的表達(dá)式為,代入B(3,0),C(0,3)求得:,
令x=1,則y=-1+3=2,
∴E(1,2),
設(shè)P(x,y)(x>0,y>0),則,,
∵S△PAB=S△OEB,
∴2y=3
∴,即,
解得:,(不合題意,舍去),
∴點P橫坐標(biāo)為;
(3)由B(3,0),C(0,3)知,OC=OB,即△OBC為等腰直角三角形,
∴∠OBC=45°,
∴旋轉(zhuǎn)角為90°,∠EBE'=90°,如圖所示,
∴∠EBM=∠E'BN=45°,
又∠EMB=∠BNE'=90°,BE=BE'
∴△EMB≌△E'NB
∴E'N=EM=2,NB=MB=2,
∴E'(5,2)
∵O'B=OB=3,
∴O'(3,3),
根據(jù)E'(5,2),O'(3,3),求得直線O'E'的解析式為:,
聯(lián)立,得:,解得:,
∴交點坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,是中點,是中點,是的外角的角平分線,延長交于點,連接.
(1)求證:四邊形是矩形;
(2)填空:
①若,則四邊形的面積為_______;
②當(dāng)滿足______時,四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,將繞著點旋轉(zhuǎn),點、的對應(yīng)點分別記為、,與邊相交于點,如果,那么線段的長為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交x軸于點A,B(點A在點B的左側(cè)).
(1)求點A,B的坐標(biāo),并根據(jù)該函數(shù)圖象寫出y≥0時x的取值范圍;
(2)把點B向上平移m個單位得點B1.若點B1向左平移n個單位,將與該二次函數(shù)圖象上的點B2重合;若點B1向左平移(n+6)個單位,將與該二次函數(shù)圖象上的點B3重合.已知m>0,n>0,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點G在AB上,點H在BC上,且∠GDH=45°,DG、DH分別與對角線AC交于點E、F,則線段AE、EF、FC之間的數(shù)量關(guān)系為_______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在菱形ABCD中,E是BC上一點,且AE=AB,∠EAD=2∠BAE.
(1)求∠BAD的度數(shù);
(2)求證:BE=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某專賣店有兩種商品,已知在打折前,買件商品和件商品用了元,買件商品和件商品用了元.兩種商品打相同折以后,某人買件商品和件商品一共比不打折少花元,請問兩種商品打折前各多少錢?打了多少折?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com