【題目】如圖,正方形的邊長為分別位于軸,軸上,點(diǎn)上,于點(diǎn),函數(shù)的圖像經(jīng)過點(diǎn),若,則的值為(

A. B. C. D.

【答案】C

【解析】

根據(jù)正方形的性質(zhì)可得出OCAB,從而得出BPQ∽△OQC,再根據(jù),即可得出點(diǎn)P的坐標(biāo),利用待定系數(shù)法求出直線OB、CP的解析式,聯(lián)立兩個(gè)解析式求出交點(diǎn)坐標(biāo)后再由反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出結(jié)論.

∵四邊形OABC為正方形,

OCAB

BPQOQC,

∵正方形OABC的邊長為6,

∴點(diǎn)C(0,6),B(6,6),P(6,3),

利用待定系數(shù)法可求出:

直線OB的解析式為y=x,直線CP的解析式為

聯(lián)立OB、CP的解析式得:

解得:

Q(4,4).

∵函數(shù)的圖象經(jīng)過點(diǎn)Q,

k=4×4=16.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB經(jīng)過⊙O上的點(diǎn)C,且OA=OBCA=CB.

(1)求證:直線AB是⊙O的切線;

(2)若∠A=30°,AC=6,求⊙O的周長;

(3)(2)的條件下,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是菱形ABCD的對角線.

1)請用直尺和圓規(guī)作AB的垂直平分線EF,垂足為點(diǎn)E,交AD于點(diǎn)F;(不要求寫作法,保留作圖痕跡)

2)在(1)的條件下,連接BF,若∠CBD=75°,求∠DBF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線MN是線段BC的垂直平分線,垂足為O,P為射線OM上的一點(diǎn),連接BP,PC.將線段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),得到線段PQPQPC不重合),旋轉(zhuǎn)角為α0°<α180°)直線CQMN與點(diǎn)D

1)如圖1,當(dāng)α30°,且點(diǎn)P與點(diǎn)O重合時(shí),∠CDM的度數(shù)是   ;

2)如圖2,且點(diǎn)P與點(diǎn)O不重合.

①當(dāng)α120°時(shí),求∠CDM的度數(shù);

②用含α的代數(shù)式表示∠CDM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】E-learning即為在線學(xué)習(xí),是一種新型的學(xué)習(xí)方式.某網(wǎng)站提供了A、B兩種在線學(xué)習(xí)的收費(fèi)方式.A種:在線學(xué)習(xí)10小時(shí)(包括10小時(shí))以內(nèi),收取費(fèi)用5元,超過10小時(shí)時(shí),在收取5元的基礎(chǔ)上,超過部分每小時(shí)收費(fèi)0.6元(不足1小時(shí)按1小時(shí)計(jì));B種:每月的收費(fèi)金額(元)與在線學(xué)習(xí)時(shí)間是(時(shí))之間的函數(shù)關(guān)系如圖所示.

1)按照B種方式收費(fèi),當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式.

2)如果小明三月份在這個(gè)網(wǎng)站在線學(xué)習(xí),他按照A種方式支付了20元,那么在線學(xué)習(xí)的時(shí)間最多是多少小時(shí)?如果該月他按照B 種方式付費(fèi),那么他需要多付多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鮮豐水果店計(jì)劃用/盒的進(jìn)價(jià)購進(jìn)一款水果禮盒以備銷售.

據(jù)調(diào)查,當(dāng)該種水果禮盒的售價(jià)為/盒時(shí),月銷量為盒,每盒售價(jià)每增長元,月銷量就相應(yīng)減少盒,若使水果禮盒的月銷量不低于盒,每盒售價(jià)應(yīng)不高于多少元?

在實(shí)際銷售時(shí),由于天氣和運(yùn)輸?shù)脑颍亢兴Y盒的進(jìn)價(jià)提高了,而每盒水果禮盒的售價(jià)比(1)中最高售價(jià)減少了,月銷量比(1)中最低月銷量盒增加了,結(jié)果該月水果店銷售該水果禮盒的利潤達(dá)到了元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點(diǎn)AB3,0),與y軸交于點(diǎn)C0,3).

1)求拋物線的解析式;

2)若點(diǎn)M是拋物線上在x軸下方的動(dòng)點(diǎn),過MMNy軸交直線BC于點(diǎn)N,求線段MN的最大值;

3E是拋物線對稱軸上一點(diǎn),F是拋物線上一點(diǎn),是否存在以A,BE,F為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點(diǎn),沿EC對折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,聯(lián)結(jié)AP并延長APCDF點(diǎn),

1)求證:四邊形AECF為平行四邊形;

2)如果PA=PC,聯(lián)結(jié)BP,求證:△APBEPC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙OBC是⊙O的直徑,弦AFBC于點(diǎn)E,延長BC到點(diǎn)D,連接OA,AD,使得∠FAC=AOD,∠D=BAF

(1)求證:AD是⊙O的切線;

(2)若⊙O的半徑為5,CE=2,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案