【題目】關(guān)于x的一元二次方程mx2+(2m+1)x+m0有兩個(gè)實(shí)數(shù)根.

(1)m的取值范圍

(2)是否存在實(shí)數(shù)m,使方程的兩實(shí)數(shù)根的倒數(shù)和為0?若存在,請求出m的值;若不存在,請說明理由.

【答案】(1)m≥m≠0;(2)不存在,理由見解析.

【解析】

(1)利用根的判別式的意義得到m≠0且△═4m+1≥0,然后解兩不等式求出它們的公共部分即可;

(2) 設(shè)方程的兩根分別是 a b,利用根與系數(shù)的關(guān)系得到a+b=﹣ab1,則利用0得到﹣0,即可求出m的值,然后根據(jù)(1)中m的取值范圍即可判斷.

解:(1)根據(jù)題意得m≠0

解得m≥m≠0

(2)不存在.

設(shè)方程的兩根分別是 a b,則a+b=﹣ab1,

0,即0,

∴﹣0,解得m,

m≥m≠0

∴故不存在m,使方程的兩實(shí)數(shù)根的倒數(shù)和為0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)Ax軸上一點(diǎn),點(diǎn)B的坐標(biāo)為(a,b),以OAAB為邊構(gòu)造OABC,過點(diǎn)OC,B的拋物線與x軸交于點(diǎn)D,連結(jié)CD,交邊AB于點(diǎn)E,若AEBE,則點(diǎn)C的橫坐標(biāo)為( 。

A.abB.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,已知∠C=90°,∠B=55°,點(diǎn)D在邊BC上,BD=2CD.把△ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m0m180)度后,如果點(diǎn)B恰好落在初始Rt△ABC的邊上,那么m為( )

A70° B70°120°

C120° D80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,點(diǎn)分別在邊上,,連接,點(diǎn)分別為的中點(diǎn).

1)觀察猜想

1中,線段的數(shù)量關(guān)系是________,的度數(shù)是________;

2)探究證明

繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接,判斷的形狀,并說明理由;

3)拓展延伸

繞點(diǎn)在平面內(nèi)自由旋轉(zhuǎn),若,請直接寫出面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)的圖象與直線交于點(diǎn).

1)求k、m的值;

2)已知點(diǎn),過點(diǎn)P作平行于x軸的直線,交直線于點(diǎn)M,過點(diǎn)P作平行于y軸的直線,交函數(shù)的圖象于點(diǎn)N.

①當(dāng)時(shí),判斷線段PMPN的數(shù)量關(guān)系,并說明理由;

②用含n的式子表示PN,則________.

③若,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+cab,c是常數(shù),a0)的自變量x與函數(shù)值y的部分對應(yīng)值如表:

x

2

1

0

1

2

yax2+bx+c

t

m

2

2

n

且當(dāng)x時(shí),與其對應(yīng)的函數(shù)值y0,有下列結(jié)論:

abc0;mn;23是關(guān)于x的方程ax2+bx+ct的兩個(gè)根;

其中,正確結(jié)論的個(gè)數(shù)是( 。.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,邊上點(diǎn)(點(diǎn),不重合),連結(jié),將線段繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°得到線段,連結(jié)于點(diǎn),連接

1)求證:

2)當(dāng)時(shí),求的度數(shù);

3)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點(diǎn),且EDF=45°.將DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到DCM.

1)求證:EF=FM

2)當(dāng)AE=1時(shí),求EF的長.

查看答案和解析>>

同步練習(xí)冊答案